

table of contents

November 1998,
Volume 50, Issue 1

Articles

HP SnapLED: LED Assemblies for Automotive
Signal Lighting
by James W. Stewart

OTDR APIs Enable Customers to Build Their
Own Systems
by Torsten Born and Peter Thoma

Updating a UNIX Application Suite for the
Windows NT World
by Thomas W. Hutchinson and Ronald R. Derynck

Integrating Real-Time Systems with Corporate
Information Systems
by Ronald R. Derynck and Thomas W. Hutchinson

New Approaches to Creating and Testing
Internationalized Software
by Harry J. Robinson and Sankar L. Chakrabarti

Comparison of Finite-Difference and SPICE
Tools for Thermal Modeling of the Effects of
Nonuniform Power Generation in High-Power
CPUs
by Jeffrey L. Deeney and C. Michael Ramsey

A Low-Complexity, Fixed-Rate Compression
Scheme for Color Images and Documents
by Nader Moayeri

javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/prodserv.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/prodserv.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/support.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/support.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/solutions.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/solutions.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/howtobuy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/howtobuy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://www.hp.com/go/search-us-eng/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hp.com/go/search-us-eng/'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/contact.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/contact.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/covnov98.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/ahead-1198.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/past.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/journal.html
javascript:if(confirm('http://www.hpl.hp.com/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/'
javascript:if(confirm('http://www.hpl.hp.com/about/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/'
javascript:if(confirm('http://www.hpl.hp.com/research/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/research/'
javascript:if(confirm('http://www.hpl.hp.com/news/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/news/'
javascript:if(confirm('http://www.hpl.hp.com/jobs/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/jobs/'
javascript:if(confirm('http://www.hpl.hp.com/techreports/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/techreports/'
javascript:if(confirm('http://www.hpl.hp.com/about/sites.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/sites.html'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98nov/nov98a7.htm

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

1
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

HP SnapLED: LED Assemblies for Automotive
Signal Lighting

Decreased packaging cost and improved performance have helped LEDs gain

acceptance as light sources in automotive applications such as signal lighting.

An assembly technique is described that allows the creation of thin taillamps

that can be customized to conform to the shape of a particular vehicle.

Because of developments in high-brightness LED materials and high-

power LED packaging, LEDs are more frequently being used in automotive

signal lamps. A new product, HP SnapLED, combines the latest LED technol-

ogy with a three-dimensional assembly technique to create a thin taillamp that

conforms to the shape of the vehicle (see Figure 1).

Background

The first LED signal lamp appeared on a passenger vehicle in 1985. The 1986

Nissan 300ZX center high mounted stop lamp (CHMSL) used 72 absorbing

substrate AlGaAs, 5-mm LEDs assembled on a printed circuit board. From

this start, LEDs have gained acceptance in the automotive industry because

of a decrease in the cost of LED light sources. These cost reductions have

come from an increase in the performance of the LEDs, which results in a

reduction in the number of LEDs required for a function. As the number of

LEDs required goes down, LED packaging cost and assembly cost are

proportionally reduced. Figure 2 shows the number of LEDs required to

meet the CHMSL specification from 1985 to 1997.

The main factors that have contributed to the increased performance of LEDs

are more efficient LED materials (see Figure 3) and improved LED packaging.

Since their introduction into automotive applications, LED efficiency has

increased over 500%. In 1994, HP introduced a new LED package designed

specifically for automotive lighting. This new package, called SuperFlux, was

����
 �� �����	�

����
 �� �����	�

An automotive product

development manager at

the HP Optoelectronics

Division, James Stewart is responsible for elec-

tronic packaging and automotive lighting. He

joined HP in 1990 after graduating from the

University of California at Santa Barbara with a

BS degree in mechanical engineering. James

was born in Santa Maria, California.

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

2
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 1

Automobile taillamps. (a) Contains LED technology.
(b) Contains incandescent lamps.

(a) (b)

Figure 2

Number of LEDs required for center high mounted stop lamp
(CHMSL) applications from 1985 to 1997.

80

70

60

50

40

30

20

10

0
1985

Year

1990 1995

72

40

20
16

12

N
um

be
r o

f L
ED

s

Figure 3

Time evolution of red and amber LED technology.

Year

100

10

1

0.1

Pe
rf

or
m

an
ce

 (L
um

en
s/

W
at

t)

Red Filtered

GaP:N

GaAs0.6P0.4
Red

Unfiltered Incandescent Lamp

Yellow Filtered

GaAsP:N
Red, Yellow

GaP:Zn,O
Red

AlGaAs/GaAs
Red

AlGaAs/AlGaAs
Red

AlInGaP/GaAs
Red-Orange

or Amber

AlInGaP/GaP
Red-Orange

or Amber

1970 1975 1980 1985 1990 1995 20001965

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

3
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 4

Superflux and 5-mm LED packages.

5-mm LED
SuperFlux

more optically efficient and could be operated at twice
the drive current of conventional LED packages. The
SuperFlux package and a conventional 5-mm LED are
shown in Figure 4.

Figure 5 shows the light-output performance of a Super-
Flux package compared to the 5-mm package in an auto-
motive application. Each package contains the same type
of LED chip (TSAlInGaP/GaP).

Figure 5

Flux versus forward current for a SuperFlux LED package
compared to a 5-mm LED package. Both contain AlInGaP
LEDs.

4

3

2

1

0
0

If Current (mA)

Fl
ux

 (L
um

en
s)

SuperFlux

5-mm

10 20 30 40 50 60 70 80 90 100

The AlInGaP LED light output shown in Figure 5 does
not increase linearly with forward current (If) in typical
use conditions. Figure 6 shows that AlInGaP demon-
strates an exponential drop-off in light output as a func-
tion of increasing junction temperature (Tj). At higher
drive currents, more heat is created in the device and Tj

rises. This rise in Tj, and the corresponding decrease in
device efficiency, eventually offsets the increase in light
output because of increased If.

The combination of AlInGaP materials and SuperFlux
LED packaging are the basis for HP’s automotive lighting
products and the foundation for SnapLED. Today HP’s
LED technology can be found on approximately 15% of
the cars in production and many heavy duty tractors and
trailers.

LED Rear Combination Lamps

The signal lamps at the rear corners of the vehicle, which
combine tail, turn, stop, and often side marker and reverse
functions in one package, are commonly referred to as
rear combination lamps (RCLs). RCLs used in modern
vehicles have complex 3D outer lens surfaces that follow
the contour of the car body. An LED light source for this
application must have the following attributes.

Styling Flexibility. RCLs are used to differentiate the look
of a vehicle. An LED light source needs to accommodate
the range of designs of conventional incandescent RCLs
and at the same time offer additional styling flexibility.

Figure 6

Relative flux versus junction temperature for AlInGaP LEDs.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
1009080706050403020100

Junction Temperature (°C)

Re
la

tiv
e

Fl
ux

 (L
um

en
s)

�vrelative
�vroom temperature

e 0.1(T
j

T
room

)

�v Luminous Flux

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

4
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Low System Cost. System cost refers to the cost for the
automobile manufacturer to purchase, install, and main-
tain a signal lamp on a vehicle. Some elements of system
cost include warranty expenses, electrical power con-
sumption, adding features to body panels to mount the
lamp, wires, and other electrical connections. LED light
sources are more expensive than their incandescent coun-
terparts. However, the system cost of an LED signal lamp
can be comparable to an incandescent signal lamp.

Power Consumption. Power use is of particular interest
in modern vehicles because ever increasing electrical
demands are resulting in excessive alternator loads.
Many vehicle manufactures now assign a cost savings
per ampere in the range of U.S. $3 to $5. A conventional
incandescent RCL will consume approximately 2.5A to 5A
in the stop mode. An LED RCL will consume 0.5A to 1.5A
in the stop mode, saving approximately 2A to 3A, which
correlates to a system cost savings of U.S. $6 to $15 per
side and U.S. $12 to $30 per vehicle.

Space Savings. Saving space is another area of interest in
modern vehicles. By creating a three-dimensional distrib-
uted light source, the thickness of the RCL can be reduced
as shown in Figure 7.

Incandescent RCLs can be as deep as six inches compared
to LED RCLs which can be as thin as one inch. Incandes-
cent RCLs consume valuable trunk space and require the
addition of deep-drawn pieces to the rear quarter panel of
the vehicle to accommodate their depth.

SnapLED Design

The SnapLED assembly consists of a modified SuperFlux
LED emitter, which is clinched to a metal frame called a
clinch frame. The clinch joint mechanically and electri-
cally attaches the emitter to the clinch frame. The clinch
frame performs the task of a printed circuit board, provid-
ing the mechanical structure for the assembly and forming
the desired electrical circuit. Figure 8 shows a SnapLED
emitter, a clinch frame, an assembled SnapLED array, and
a formed array.

SnapLED Emitter Design. Both the SuperFlux and Snap-
LED emitters are manufactured on the same assembly line,
and except for the lead frame, share the same materials
and piece parts. The optical design and body outlines are
identical. By using a proven emitter design (SuperFlux),
the risk, investment, and time to market were minimized.

Figure 7

Cross sections of (a) LED and (b) incandescent rear
combination lamps (RCLs)

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ

Ï
Ï
Ï
Ï
Ï
Ï
Ï

(a) (b)

In addition, the combined volumes of SuperFlux and
SnapLED emitters allow for reduced manufacturing costs.

As can be seen in Figure 8, large pads extend from the
anode and cathode leads of the device and serve as the
areas for the clinch attachment. (A better view of these
pads is shown in Figure14.) The exposed portions of
the leadframe, including the attachment pads, are nickel
plated to prevent tarnish and corrosion.

SnapLED Clinch Frame Design. The clinch frame must
provide adequate mechanical support, form the electrical
circuit, and dissipate heat as efficiently as possible. The
base material used for the clinch frames is the same cop-
per alloy used for the emitter leadframe. The plating used
on the clinch frame is a tin alloy, which resists tarnish and
is well suited for slide-on electrical connectors. Special
features are added at all bend locations to ensure well
controlled, properly formed bends.

Drive Circuitry Design. Standard electronic components
cannot be clinched to a SnapLED array. For this reason,

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

5
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 8

The components of a SnapLED array.

Clinch Frame

Assembled
Array SnapLED

Emitter

Formed Array

all drive circuitry is either mounted in the wire harness or
on a remote printed circuit board. For CHMSL (center
high mount stop lamp) applications, in which drive cir-
cuitry typically consists of a current-limiting resistor and
a reverse-voltage-blocking diode, the drive circuit can
be mounted in the wire harness. For RCL applications,
current control drive circuits are recommended. These
circuits are so complex that mounting the circuitry in the
wire harness is impractical. For RCLs, a remote printed
circuit board contains the drive circuitry. This LED drive

Figure 9

Connector Blades

LED Drive Module PCB

SnapLED Emitter

Clinch Frame

SnapLED assembly attached to the LED drive module PCB.

module is connected directly to two connector blades on
the SnapLED assembly (see Figure 9).

The remote location of the LED drive module isolates the
heat generated by the drive circuit from the LED array.
This is advantageous because light output in AlInGaP
LEDs degrades with elevated temperatures. It is also
advisable to use low-dropout, low-power, current control
circuitry to minimize the heat generated. Switching cur-
rent regulators are ideal because of their high efficiency.

Figure 10

Block diagram of a switching power supply for LED rear combination lights (RCLs).

Power
Switching
Regulator

Stop

Tail

Turn

Feedback
Control

LED
Assembly

(Stop)

Constant-
Current

Sink

LED
Assembly

(Tail)

LED
Assembly

(Turn)

Constant-
Current

Sink

Constant-
Current

Sink

Over-
Temperature

Detection

Constant Voltage

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

6
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

LED Drive
Module

(See Figure 10)

Figure 11

Typical SnapLED circuit configuration.

However EMI and added cost and complexity have limited
their use. A block diagram of a switching power supply for
LED RCLs is shown in Figure 10.

Clinch frames cannot accommodate the complexity of
printed circuit board circuit designs. In addition, all drive
circuitry must be located remotely. For these reasons,
SnapLED circuits are generally parallel-series configura-
tions as shown in Figure 11.

With conventional drive circuitry, no more than three to
four LEDs are run in series so the LED array will operate
under low-voltage conditions (9V). This is not true in the
case of switching drive circuits in which the input voltage
can be converted to a higher or lower level. To operate
LEDs in parallel, the LED emitters within a parallel string
must be voltage matched. HP sorts and categorizes its
automotive LEDs into 120 mV bins for this purpose.

SnapLED Clinch Process

Clinching is a method for mechanically joining nonferrous
metals. In a typical application, several clinch joints are
used to attach two metal sheets together. Because of space
constraints, there is no redundancy in clinch joints on
SnapLED, and each joint performs a critical mechanical
and electrical function. This new clinching application
required extensive process development.

Among several clinching methods available, a pierce and
form clinch joint was chosen for SnapLED because of its
compact size and the simplicity of tooling. Figure 12

shows a perspective view of the clinch tool used for
SnapLED joint formation.

Figure 13 shows the clinch process. Figure 13a shows
the materials to be joined positioned under the clinch
tooling. Figure 13b shows the punch and stripper posi-
tion after piercing the clinch frame and LED lead. Figure

13c shows the compression and expansion of the displaced

Figure 12

SnapLED clinch tool.

É
É
É
É

ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ

ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ

Top

Front

LED Lead

SnapLED Emitter

Clinch
Frame

Punch

Punch
Stripper

Clinch Joint

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

7
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 13

The clinching process. (a) Placement of components. (b) Punch pierces substrate and LED lead. (c) LED lead is clinch-locked to
substrate.

Inner Anvil

Outer Plates of Anvil

Bottom Surface of Inner Anvil

LED Lead

Copper Alloy Substrate
(Clinch Frame)

Punch

Cap Thickness

(a)

(c)

Material Flows
Out to Sides

(b)

Side Front

SnapLED
Emitter

Cap Thickness

material as the punch continues its travel. A photograph
of an individual clinch joint is shown in Figure 14.

Many parameters must be controlled to ensure a proper
clinch joint. The following is a list of critical parameters.

Cap Thickness. The thickness of the upset material, or
cap, must be controlled to within 0.10 mm. If the cap is
too thick, this indicates that it has not been compressed
enough to ensure proper material expansion and inter-
locking. If the cap is too thin, this indicates over compres-
sion which results in weakening of the base material.
Over compression also results in premature wear of the

tooling. Inductive position sensors are used to monitor
cap thickness on production assembly equipment.

Tooling Alignment. If the top and bottom halves of the
SnapLED tooling are not properly aligned, the clinch joint
will not be properly formed. The joint becomes D-shaped
because shearing only takes place on one side of the joint.
Sample inspection is currently used to detect this defect.
An investigation is under way to use dynamic force data
to monitor tooling alignment.

Material Hardness. The hardness of the materials to be
joined must be matched and controlled. If the materials

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

8
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 14

A close-up view of a clinch joint.

SnapLED EmitterClinch Joint

Anode

Cathode

are too soft, the joint will be weak. If the materials are too
hard and brittle, they may fracture during clinching or may
not flow together during compression. If the hardness of
the materials is not matched, the two materials will not
flow evenly, again resulting in a weak joint. Hardness of
base materials is monitored on a sample basis. In addition,
piezoelectric force sensors monitor the force during the
clinching process. If the force required to form the joint
is too high or too low, this indicates a base material that
is too hard or too soft.

SnapLED Manufacturing

SnapLED required the development of special electronic
assembly equipment and processes. A flow chart of the
SnapLED manufacturing process is shown in Figure 15.

Clinching. Two types of clinching automation have been
developed. First, there is clinching equipment that is dedi-
cated to a single product, is fully automated, and incorpo-
rates clinch frame feeding, emitter placement and clinch-
ing, and shearing. The second type of automation involves
flexible clinching equipment that automates only emitter
placement and clinching but can accommodate a wide
variety of array designs. Flexible equipment is preferred
for automotive products because taillight designs change
every three to five years as new vehicles are designed.
An example of a flexible clinch machine is shown in
Figure 16.

In this design, one or more clinch frames are loaded into
a clinch fixture. Several clinch fixtures can be loaded and
staged before clinching. SnapLED emitters are positioned
under the clinch tooling by the pickup turret as the clinch
frames are positioned by the x-y positioning stages.
Figure 17 shows the emitter placement mechanism.

SnapLED emitters are packaged in tubes and fed into a
track. Parts slide down the track to a rotary stage where
the part is tested and oriented to the proper polarity. Parts
are then staged in a buffer zone at the end of the track.

Figure 15

SnapLED manufacturing process.

Lot
Formation Clinching Shearing Bending

YesBacking
Plate?

Connector/
LDM?

Ship Pack Label
Electrical

and Optical
Test

Backing Plate
Attach

Connector/LDM
Attach

Yes

No

No

LDM LED Drive Module

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

9
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

SnapLED Emitter Tube Feeder

X-Y Positioning Stages

Figure 16

A flexible clinch machine.

The vacuum pickup turret picks the part from the end of
the buffer and rotates it 45 degrees. As the turret rotates,
the emitter at the other side of the turret is positioned
under the clinch tooling. In parallel, the clinch frames
are positioned by the linear stages. Once the emitter and
clinch frame are in the proper orientation, the press is
actuated and the punches rise to form the clinch joint
shown in Figure 14. When all the emitters have been
clinched into position, the stages return to a home posi-
tion so another clinch fixture can be loaded.

Testing. SnapLED emitters are tested and separated into
flux, color, and forward voltage (Vf) categories. Typically,
a single category of emitter is used to create an array to
ensure proper performance and uniformity. However, for
some applications, different color and Vf bins may be used.

After assembly, the array must pass a final electrical
and optical test. Here, the array is checked for current
compliance at the designed voltage input, light output
uniformity* between the individual LED emitters, and

* Ratio of dimmest to brightest LEDs anywhere on the array.

Figure 17

Parts of the SnapLED assembly machine.

Clinch FixtureSnapLED ToolingClinch Frames

Rotary Stage

Buffer Zone

Pickup Turret

SnapLED Emitters

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

10
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

overall light output. Light output uniformity is controlled
within a ratio of 1:1.9 (dimmest : brightest) for red devices
and approximately 1:1.7 for amber devices. Overall light
output is determined by averaging the light output of the
individual emitters.

The testers are modular to maintain a high degree of flexi-
bility. The modules consist of a PC, power supply, optical
detector array, and test fixture (see Figure 18).

The PC is used to provide control, data acquisition, data
storage, and a user interface for the system. The test fix-
ture properly positions the array under a large-diameter,
fiber-optic array. The fiber-optic array channels the light
from the emitters to the optical detector array. The

optical detector array consists of a 10 by 12 grid of surface
mount optical detectors attached to a printed circuit
board contained in a housing. The top plate of the housing
accurately positions the fibers over the detectors and
allows the individual fibers to be installed and removed
as needed.

Because the clinch frames must conform to different tail-
light designs, each SnapLED array must have a dedicated
test fixture, but all other test hardware can be shared. In
addition, minor modifications to the tester’s software are
needed for each array to account for different test limits,
number of LEDs, and type of LEDs used.

Figure 18

(a) Block diagram for a SnapLED tester. (b) SnapLED test station.

PC Controller and
Data Acquisition

Storage

Optical
Detector Array

Test
Fixture

Power
Supply

Large-Diameter
Fiber Optic Link

(a)

(b)

SnapLED
Emitters

Optical
Detector

Array

Fiber Optic Array

Data
Acquisition
and Control

Optical Detector Array

Large Diameter
Fiber Optic Array

Test Fixture (Holds
SnapLED Emitters
Being Tested)

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

11
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

SnapLED Array Design

The SnapLED array design process begins with design
reviews with the automobile manufacturer and lighting
supplier to make sure the lamp design is optimized in
terms of style, performance, manufacturability, and eco-
nomics. Once the RCL design is complete, the SnapLED
array can be designed.

Solid models of the RCL housing, provided by the customer,
are imported into the PE/Solid Designer CAD system. The
LED array is then created with the LEDs in their proper
locations. Attachment and alignment features, electrical
connectors, bend lines, and electrical traces are then
added. After completing the three-dimensional model,
the clinch frame is “unbent” into its two-dimensional form
using Sheet Advisor (a module in PE/Solid Designer). The
two-dimensional clinch frame is then modified to include
supporting structures needed to fix and stabilize the part
during array assembly.

Early prototypes are created using chemically etched
clinch frames. The prototype parts are bent, sheared, and
tested using flexible tooling and equipment. Prototype
arrays can then be checked for fit and ease of assembly
using plastic housing prototypes fabricated by rapid
prototyping techniques.

A flow chart of the SnapLED design cycle is shown in
Figure 19.

SnapLED on the Road

The first SnapLED array in production appeared on the
center high mounted stop lamp of the 1998 Ford Explorer.
SnapLED has been designed into other vehicles slated for
late 1998 production. They will be used in applications
ranging from the world’s first LED turn signals to rear
combination lamps.

Figure 19

SnapLED design cycle.

Design
Feasible

?

Electronic
Data Exchange

Lamp Design

Design Review
with Lighting

Supplier

CAD Design of
SnapLED Array

CAD Design
of Clinch Frame

Lighting Supplier to
Review with Vehicle

Manufacturer Rapid Prototype
Fabrication of
Lamp Housing

Fabricate
Prototype

Clinch Fixtures

Chemically Etch
Clinch Frames

Check Fit and
Function of
Prototype

Review Prototypes
with Lighting

Supplier

Yes

No

Volume 50 • Number 1 • Article 1
November 1, 1998

 1998 Hewlett-Packard Company

12
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Acknowledgments

The original concept and much of the pioneering work in
clinched LED arrays was conducted by Dick Klinke and
Gary Sasser. Wayne Snyder and Jim Leising provided
unwavering management support throughout the project,
and for this, the author is grateful. Much of the credit for
the development and commercialization of SnapLED be-
longs to Dave Brandner, Todd Swanson, Douglas Woolver-
ton, Chris Togami, and Leong Ak Wing. Many others, too
numerous to acknowledge individually, have contributed
to the development of SnapLED and SnapLED arrays for
specific vehicles.

Bibliography

1. M.G. Craford and G.B. Stringfellow, High Brightness Light

Emitting Diodes, Academic Press, 1997.

2. Multiple Light Emitting Diode Module,
U.S. Patent #5,404,282.

3. Moldable Nesting Frame for Light Emitting Diode Array,
U.S. Patent #5,519,596.

http://www.hp.com/go/automotive

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

13
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

OTDR APIs Enable Customers to Build Their
Own Systems

In the past few years, OTDRs have evolved from being used only as standalone

measurement instruments with limited functionality to become key instruments

for servicing and characterizing global fiber-optic communication links. This

trend has spurred the creation of standard file formats for OTDR data and

standard software interfaces to control OTDRs remotely.

Optical Time Domain Reflectometers (OTDRs) have become key

instruments for characterizing fiber-optic communication links. They are

used to test the transmission performance of optical fibers by an optical

pulse-response measurement method. During installation and maintenance of

networks, OTDRs are primarily used to verify fiber and component parameters

like optical loss and reflectance. The basic result from an OTDR measurement

is the characteristic signature of the link called a trace, which is the amount of

reflected light recorded versus time and distance. For an OTDR measurement,

parameters such as pulse width, wavelength, range, and refractive index have

to be defined. The trace can be postprocessed by a scantrace algorithm, which

is used to detect faults, bad connections, and so on.

Today, optical network operators are driven by the need for high-quality service

and high flexibility for quickly evolving the network according to market needs.

The ability to access information about the fiber plant is essential for configura-

tion, fiber network upgrade, and cost-effective maintenance.

Thus, many network operators archive installation data to be used as a

reference for later comparisons during the lifetime of the network. OTDR

measurement files form the core of this data collection. The total amount of

data increases exponentially each year because of the worldwide deployment

of optical fibers.

�
��
�	 �
�	

��
�� ��
��

�
��
�	 �
�	

A software engineer at the

HP Optical Communication

Measurements Operation,

Torsten Born is presently the technical supervi-

sor for the OTDR toolkit and other projects and

is the HP contact for the Bellcore SOR (stan-

dard OTDR record) file format. He joined HP

after graduating from the University of Pader-

born in 1994 with a Diplom Ingenieur in electri-

cal engineering (focus on computer science).

He was born in Hamburg, Germany, and his

recreational interests include photography,

music, traveling, volleyball, and inline skating.

��
�� ��
��

Peter Thoma is an R&D

project manager for the

mini-OTDR HP E600A. He

is currently investigating future optical network

testing. He came to the HP Böblingen Instru-

ment division in 1993. He received a Diplom

Ingenieur in technical optics and control sys-

tems from the University of Stuttgart in 1984.

Peter was born in Tuebingen, Germany. He is

married and has three children.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

14
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 1

Remote OTDR control.

Rack OTDR

Rack OTDR

Rack OTDR

Rack OTDR

RS-232 Multiport Card

Mainframe OTDR

RS-232

Via Modem

In some networks, OTDRs are not only being used as
operator-based instruments but are also being integrated
as monitoring probes at the terminal and are controlled
remotely (see Figure 1). With this approach the link
quality of fibers and cables can be checked online. Res-
toration and repair can be optimized in case of a failure.
Degradation can even be detected before the transmission
quality suffers.

These trends call for a broader use of standards in OTDRs,
such as standard file formats, standard remote interfaces,
and application support with these standards.

Hewlett Packard provides a range of products (for exam-
ple, the HP E6090A OTDR toolkit and the HP 81700 Series
remote fiber test system) that offer complete solutions for
monitoring OTDR measurement data during the complete
network life cycle. These solutions are based on the TMN
(Telecommunications Management Network) approach
and use standard databases and interfaces.1

Market Needs

The telecommunications environment has a number of
requirements for customers and solution providers like
Hewlett-Packard. For system software that works with
OTDR measurement data, these requirements include:

� Data portability. Over the lifetime of an optical fiber
(greater than 20 years), all acquired measurement
data must be accessible. Thus, old data formats must
be supported. This also implies compliance with indus-
try standards such as the Bellcore OTDR file format.2

� Multivendor capability. Measurement data is typically
generated by instruments from various vendors.

� Quality. The software volume covered by tests grows
with every new product generation.

� Cost-effective development. Since the general principles
of the software remain the same when developing a
new product, it is very important to offer a large reuse
potential to save development resources and allow cost-
effective development.

� Knowledge concentration. Most customers do not have
expertise in OTDR measurement data analysis.

� Integration into customer-specific systems. Besides
integrating OTDR data into existing customer asset
management systems, the software should also be able
to:

� Establish communication with an instrument

� Provide instrument control

� Decode and encode OTDR measurement data

� Perform offline analysis of measurement data.

� Long-term consistency. To follow the technological
evolution of operating systems or measurement cap-
abilities, a solid platform (operating system) is required
for future migrations.

To address these market needs, HP offers two libraries:
OTDRAPI and OTDRCAPI, which are application program-
ming interfaces that are based on HP’s OTDR design and

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

15
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

application knowledge. These libraries allow customers
to postprocess measurement results and control the
OTDRs from their own software environment. These
libraries are compiled as 16- or 32-bit Windows DLLs
(dynamic link libraries) and offer interfaces to standard C
and Visual Basic. Both libraries are designed to work to-
gether and offer customers a transparent programming
environment that can be integrated into any proprietary
system software.

The rest of this article describes the features and imple-
mentation details of the OTDRAPI and OTDRCAPI
libraries.

Solutions

Features offered in the OTDRAPI library include loading
and storing measurement data in standard Bellcore format,
performing analysis operations (scantrace, loss calcula-
tions), and creating configuration* files and templates.
The OTDRCAPI provides complete encapsulation of the
serial interface and the SCPI (Standard Commands for
Programmable Instruments) command language. Both
libraries provide access to all measurement data and
parameters on the remote OTDR.

The hardware component is a faceless OTDR for system
integration, the HP E605x rack OTDR, which offers maxi-
mum measurement accuracy at a minimum price. The
OTDR APIs help customers to write their own system
software around this measurement hardware without the
need to be OTDR specialists or have intricate serial inter-
face knowledge. By encapsulating the communications
functions, it is possible to offer optimal connectivity and
data transmission performance as well as transparent
error handling.

Standards

The OTDR libraries support two industry standards: the
Bellcore file format for optical data and the SCPI com-
mand language for communicating with the instrument.

Bellcore File Format. In the past, every OTDR manufac-
turer had at least one file format of its own for storing
OTDR measurement results. This has been a problem for
the customers who have to cooperate with companies

* The configuration file contains a subset of all instrument settings, including measurement
parameters that are needed to configure a measurement. This allows all necessary
parameters to be sent in just two commands (file transfer and load setting) in a very
compact format to the OTDR.

that use different measurement equipment and data for-
mats. Since several companies are involved in manufactur-
ing, installing, monitoring, and servicing optical fibers, a
common data format and documentation standard has
become necessary. The Bellcore SOR (standard OTDR
record) format is the first attempt to create a common,
portable OTDR data format and overcome these problems.

Although the SOR format solves the data exchangeability
problems, it generates some new tasks for those customers
who need to decode the data because SOR:

� Is in binary format

� Is a “living” standard in that it will experience regular
updates

� Represents a superset of OTDR data from different
manufacturers, so that its structure is complicated, and
it contains data that may not be relevant to all customers

� Stores data in uncommon formats for portability.

Why would a customer want to decode the SOR? The main
reason for decoding a binary data file is to create docu-
mentation. Typically, customers have their own documen-
tation rules (for example, how to organize the different
OTDR data on a printed report). There is no standard rule
about which data to use and how to interpret it.

SCPI Remote Language. SCPI is a standard that is being
driven by Hewlett-Packard. Many HP instruments support
SCPI for remote control via HP-IB (IEEE 488.1, IEC 625),
RS-232, or LAN.

SCPI uses ASCII commands to offer a functional interface
to the instrument. Therefore, long-term and multivendor
compatibility are taken care of by design. The complete
programming language is organized in a tree structure in
which each root represents a different view of the instru-
ment’s measurement or configuration data. Branches
allow for accessing the relevant data of any particular
view. For example, changing the instrument’s serial baud
rate is achieved by using a command from the SYSTEM
tree, which allows for accessing configuration data. For
example:

SYSTEM:COMMUNICATE:SERIAL:BAUDRATE 57600

where COMMUNICATE indicates that the data is related to
communication, SERIAL accesses data for the serial inter-
face, and BAUDRATE indicates the actual value.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

16
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Since commands can become quite large using such
syntax, SCPI defines a short form that only uses the first
three or four characters of each branch:

SYST:COMM:SER:BAUD 57600

If the instrument supports more than one serial interface,
the command can be adjusted to address the correct port.
For example,

SYST:COMM:SER2:BAUD 57600

addresses serial port 2.

Querying the instrument’s configuration is achieved by
the same command with a “?” instead of a value appended
to the command string.

SYST:COMM:SER2:BAUD?

For more detailed information about SCPI see reference 3.

SCPI also defines the instrument’s behavior for such things
as syntax errors and parameter overflows and underflows.
Higher-level interfaces have been defined on top of the
SCPI language (for example, the VISA plug-and-play
drivers that offer an interface to applications such as
HP VEE or LabView from National Instruments).

Although remote control of an OTDR instrument mainly
serves the needs of a monitoring application, it also helps
to reduce the need to maintain an engineering staff with
a lot of knowledge about fiber-optic measurements. For
example, one engineer can set up and control several
measurements from the central office, while field techni-
cians can focus on setting up the equipment at various
measurement sites. This allows instrument control to be
done by modem.

The OTDRCAPI library allows controlling an OTDR
without even knowing the SCPI language because the
library offers a high-level functional interface for the
most common applications. For special applications,
the OTDRCAPI library offers pass-through functions,
which allow sending commands directly to the instrument
without checking or processing. This provides complete
transparency.

Software Architecture Considerations

When designing system software, several aspects have to
be considered. First the operating system and hardware
platform play an important role. Since the WINTEL com-
bination (Microsoft Windows/95/NT � Intel processor)
is becoming more and more standard, we have focused

on the Windows operating systems for our APIs. However,
since most of the API libraries’ implementation is done in
standard C and C++, a port to a real-time or HP-UX oper-
ating system would be quite easy.

The interfaces to both API libraries are standard C, C++,
and Visual Basic. Visual Basic enables customers to rap-
idly prototype applications, while standard C allows the
creation of a very elaborate software system with good
performance.

Implementation Details

Both libraries are subject to regular updates because the
Bellcore and SCPI standards are living standards. There-
fore, a major focus has been put into a generic definition
for the API function calls because these interfaces will
probably stay constant while some dynamic link libraries
may change.

OTDRAPI. The core of the OTDRAPI library is a C++
library called OTDRLIB. This library is also an important
element of all OTDR products such as the HP E4310A
mainframe OTDR, the HP E6000 mini OTDR, the HP
E6090 OTDR toolkit, the HP E605x rack OTDR, and the
HP 81700 Series 200 remote fiber test system. This library
provides all the mathematical and file access functions,
which guarantees that all changes to the instruments’
firmware can easily be updated in the OTDRAPI library.

Figure 2 shows HP OTDR products and their associated
operating systems that are already covered by the OTDR-
LIB. The data storage shown in Figure 2 contains the
following OTDR measurement data:

� Trace data points

� Measurement parameters

� Hardware-specific data

� Event and landmark tables

� Trace information such as cable and fiber identifiers.

All OTDRLIB internal definitions (such as structures and
constants) are encapsulated by the OTDRAPI library, so
that even major changes to internal data handling will not
affect the library’s external interfaces such as function
calls and data types.

We decided not to offer an object-oriented C++ interface
because standard C is already a subset. We chose to give

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

17
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

HP E4310A OTDR HP E4320A
PC Software

HP E6000A OTDR
HP E605xA OTDR

HP E5510A RFTS HP E6090A
OTDR Toolkit

HP OTDRAPI C and
Visual Basic Library

OTDRLIB:
• Data Storage
• Scantrace Algorithm
• Loss Calculation Routines
• Bellcore File Format Reader and Writer
• HP 8146 Reader

Windows 95 Windows 95
Windows NT 4.0

pSOS HP-UX Windows 3.x
Windows 95
Windows NT

Windows 3.x
Windows 95
Windows NT

Operating
Systems

Figure 2

HP OTDR products and their associated operating systems covered by OTDRLIB.

customers the flexibility of defining their own objects
depending on the available software structure.

Figure 3 shows the internal architecture for the OTDRAPI
library. The OTDRAPI library allows read access to all
data in the internal Bellcore data storage. However, it
is not possible to modify core measurement data such
as trace data, measurement parameters, and hardware-
specific data. This guarantees measurement data integ-
rity under all circumstances. It is possible to modify all
documentation data such as the event table or the trace
comments.

Figure 3

The internal architecture for the OTDRAPI library.

Scantrace

Trace
Mathematics

Bellcore
Read/Write

HP 8146
Reader

Internal
Bellcore

Data
Storage

OTDRAPI
(C and Visual Basic Calls)

OTDRLIB (C)

The library can also be used to define a set of measure-
ment parameters for a new measurement that can then be
stored in a configuration file.

Because of the large amount of data handled internally,
MS-DOS is not supported. The size of one Bellcore trace
normally exceeds 32K bytes, and we prefer to use flat
memory internally. For 16-bit Windows, we were able to
minimize the restrictions by using a large memory model,
which is unfortunately not possible with standard MS-DOS.

OTDRCAPI. One major problem that we had to overcome
with the OTDRCAPI library is the cumbersome implemen-
tation of serial communications under different operating
systems. Even the different Windows operating systems
do not have a consistent interface. To have a stable level,
we decided to use CommLib from GreenLeaf as a serial
interface abstraction layer. The CommLib offers a consis-
tent function layer for initializing, opening, closing, and
communicating over a serial interface. However, the cus-
tomer will not see any of the GreenLeaf functions because
the OTDRCAPI library encapsulates the instrument’s SCPI
remote language (see Figure 4).

For example, opening a communication with an OTDR
instrument using the OTDRCAPI library involves:

� Configuring the baud rate, handshake, and parity

� Opening the serial interface

� Reading the instrument’s identification

� Configuring some of the OTDRCAPI functions
regarding the detected instrument type

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

18
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 4

The OTDRCAPI library encapsulates the SCPI calls.

OTDRCAPI

SCPI Abstraction
Layer

GreenLeaf CommLib
Serial Abstraction Layer

RS-232

Internal
Data

Storage

� Reading the instrument’s status (for example,
measurement running)

� Switching to a higher transfer baud rate if necessary

� Returning an error when one of the above operations
fails.

The same error handling applies to all other functions
such as accessing trace data, measurement parameters,
and event tables (see Figure 5). Using a higher transfer

Figure 5

OTDR function calls from the host accessing information
from the OTDR instrument.

OTDRCAPI Function Calls
from Host Software

OTDR

Measurement
Parameters

Hardware-
Specific Data

Event and
Landmark

Table

Trace
Information

Trace Data
(Maximum

16,000 Points)

Measurement
Parameters?

Event Table?

RS-232

baud rate is useful if the instrument always boots at a de-
fault baud rate (19.2 Kbits/s) because transferring large
amounts of measurement data requires a higher transfer
rate (115.2 Kbits/s). The OTDRCAPI library takes care of
all synchronization, necessary delays, error handling, and
returning to the default baud rate when the port is closed.

Unlike the internal data storage for the OTDRAPI library,
the OTDRCAPI library holds only a part of the Bellcore
file. The OTDRCAPI library only provides a window to
the Bellcore data stored on the instrument. Therefore,
because all data structures are automatically handled
between the OTDRCAPI and OTDRAPI libraries, the pro-
grammer receives the same data structures when reading
from a remote instrument as when reading data from a
Bellcore file. Communication between the two libraries
can be handled by either using the same data structures
for items such as parameters and trace data or passing a
storage pointer from the OTDRAPI library to the OTDR-
CAPI library.

By combining both APIs, it is possible to read a complete
Bellcore trace from a remote instrument into the OTDR-
API’s internal Bellcore storage and then perform all data
and mathematical operations on this data locally using
the functions in the OTDRAPI library. This capability
allows distribution of the steps of an OTDR measurement
between the OTDR and the controlling host software. The
following steps illustrate this concept:

� Perform the measurement on the OTDR without
scantrace

� Upload the data to the host

� Perform the scantrace on the host (this will help to im-
prove performance)

� Postprocess the event table on the host

� Edit trace comments, event comments, and
landmarks on the host

� Download the data back to the OTDR

� Store the measurement on the host and OTDR.

Figure 6 shows a programming example that demon-
strates how simple the implementation of the steps listed
above can be using the two APIs. All calls with the prefix
OTDRCOM are from the OTDRCAPI library, and all calls
with the prefix OTDR are from the OTDRAPI library.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

19
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

// declarations ...
COMDEV pComdev; // the communications
 // device pointer
OTDRP pOTDRapi; // the OTDRAPI pointer
short status; // holds the status of
 // function calls

// initialize OTDRCAPI ...
if(OTDRCOMInitLib(NULL))
 {
 printf(”Unable to initialize
 OTDRCAPI!\n”;
 exit(0);
 }

// initialize port ...
pComdev = OTDRCOMInitPort(&status, ”COM1”);
if(status)
 {
 printf(”Error: %s\n”,
 OTDRCOMStatusMessage(pComdev));
 exit(0);
 }

// ... code for setting up the port goes
// here ...

// open the port ...
if(OTDRCOMOpenPort(pComdev))
 {
 printf(”Error opening the serial
 port!\n”);
 exit(0);
 }

// initialize the OTDRAPI; further error
// checking not listed!
pOTDRapi = OTDRInitLib (&status);

// start a remote measurement and wait
// for 30 sec...
OTDRCOMStartMeasurement(pComdev);
Sleep(30)

Figure 6

Example of code using OTDRAPI and OTDRCAPI library functions.

// stop the measurement ...
OTDRCOMStopMeasurement(pComdev);

// check if the measurement is stopped ...
BOOL bRunning=TRUE;
OTDRCOMIsMeasurementInProgress(pComdev,
&bRunning);
while (bRunning)
 {
 Sleep(500);
 OTDRCOMIsMeasurementInProgress(pComdev,
 &bRunning);
 }

// load the measurement data into the
// OTDRAPI ...
OTDRCOMGetFileToAPI(pComdev, pOTDRapi,
NULL);

// perform a scantrace locally; maybe set
// parameters before ...
OTDRScanTrace(pOTDRapi, NULL);

// send the data back to the OTDR ...
OTDRCOMSendFileFromAPI(pComdev, pOTDRapi,
NULL);

// store locally ...
OTDRSaveTrace(pOTDRapi, ”LOCAL.SOR”);

// store remotely ...
OTDRCOMSaveCurrentTrace(pComdev,
”REMOTE.SOR”);

// clean up all pointers ...
OTDRCOMClosePort(pComdev);
OTDRCOMFreePort(pComdev);
OTDRFreeLib(pOTDRapi);

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

20
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Outlook

Both libraries will be subject to regular updates, as the
Bellcore and the SCPI standards develop further. Bellcore
plans to release a new revision of the SOR format before
middle of 1998, which must be updated in the OTDRAPI
library. Also the remote function set of the HP E60xx and
HP E4310 OTDRs is growing.

Another area of development is the number of supported
platforms. Currently, all Windows platforms are supported
(16-bit only with a large memory model). There might
emerge a need for UNIX versions or even real-time
operating systems like pSOS�.

The OTDRAPI library uses no Windows-specific functions,
so a port to other 32-bit platforms will be quite easy. For
the OTDRCAPI library, the RS-232 abstraction layer will
need to be replaced when porting to another operating
system. For example, the GreenLeaf CommLib approach
might not work on a UNIX operating system.

Other elements such as the scantrace algorithm or the loss
calculation routines will experience regular improvements
that will also be updated in the OTDRAPI library.

Conclusion

The OTDRAPI and OTDRCAPI libraries offer a cost-effec-
tive, high-quality solution for fiber-optic system integrators.
This was achieved by reuse of the software modules de-
veloped for our OTDR products.

This approach provides a fast development time for cus-
tomers and guarantees that they will benefit from future
enhancements of the remote control facilities and the data
handling (Bellcore file format and scantrace algorithm) of
Hewlett-Packard’s OTDRs.

By offering these APIs, we enable the customers to maxi-
mize the benefit obtained from their OTDRs.

Acknowledgments

The authors would like to thank the OTDR software team,
especially Jürgen Sang, Alf Clement, Joachim Winkler,
Jonathan McEwan, and Oliver Berger for their contribu-
tions. We also want to thank John Peters at Bellcore.

References

1. J. Nemeth-Johannes, “A Standardized Instrument Programming
Language Based on IEEE Standard 488.2,” Autotestcon ’89.

URL: hpswtsvr.lvld.hp.com/goodstuff/standards/scpi/index.html

2. Generic Requirements for Optical Time Domain Reflectome-

ters, GR-196, no. 1, Bellcore, 1995 (Rev. 1, December 1997).

URL: www.bellcore.com

3. P. Ghadayammuri, “A Platform for Building Integrated Tele-
communications Network Management Applications,” Hewlett-

Packard Journal, Vol. 47, no. 5, October 1996.

Bibliography

1. T. Born, “OTDR Measurements Harmonize With Bellcore
Standard”, Test & Measurement World, August, 1997, pp. 37-38,
Test & Measurement Europe, November, 1997, pp. 21-24.

LabView a registered trademark of National Intruments..

HP–UX 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configurations) on all
HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

Windows is a U.S. registered trademark of Microsoft Corporation.

Microsoft and MS-DOS are U.S. registered trademarks of Microsoft Corporation.

http://www.tmo.hp.com/tmo/datasheets/English/HPE6090A.html
http://www.tmo.hp.com/tmo/datasheets/English/HPE6000A.html
http://www.tmo.hp.com/tmo/datasheets/English/HP8147.html
http://www.tmo.hp.com/tmo/datasheets/English/HP81700_Series_200.html

Volume 50 • Number 1 • Article 3
November 1, 1998

 1998 Hewlett-Packard Company

21
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Updating a UNIX Application Suite for the
Windows NT World

A project team learned some useful lessons in porting a real-time software

platform for industrial applications to an environment that typically runs

desktop applications such as word processors, database programs, and

spreadsheet applications.

One of the remarkable trends in software in the 1990s has been the

influence of Microsoft technologies on many industries. The area of industrial

automation and supervisory control is no exception. HP has updated a success-

ful UNIX -based product to respond to this trend while maintaining many of

the product’s strengths. The product, HP RTAP (real-time application platform),

is an example of a real-world industrial application of component software

technology.

Background

HP RTAP is a complete software framework for building industrial automation

systems. It is used in a wide variety of industries and is sold mainly through

channel partners, such as system integrators, who focus on a particular

industry or geographical area. HP RTAP has been a successful product and

has been available on the UNIX operating system since 1990.

Figure 1 shows the architecture of the UNIX-based version of HP RTAP. The

core of HP RTAP is a high-performance real-time process database based on

object-oriented concepts. It contains a spreadsheet-like calculation engine.

It also has a master timekeeper, a scan system for remote devices, and

facilities for managing events, detecting alarms, recording historical data,

and determining the health of the system.

HP RTAP also contains a complete graphical user interface (GUI) including

alarm and trend displays, reports, schematics, control panels, and a suite of

������ �� ���	�
����

�����
 �� �����	�

�����
 �� �����	�

Ronald Derynck is an R&D

section manager at the HP

Calgary Product Develop-

ment Center. He was the R&D manager for the

HP Enterprise Link and HP RTAP development

programs and is now the business team leader

for both of these products. He holds BSc (1970)

and MSc (1972) degrees in electrical engineer-

ing from the University of Calgary. He came to

HP in 1986. Ron was born in Calgary, Alberta,

Canada, and his interests outside of work in-

clude biking and cross-country skiing in the

Canadian Rockies.

������ �� ���	�
����

An R&D project manager

at the HP Calgary Product

Development Center,

Thomas Hutchinson is responsible for software

development of HP RTAP products. He has

been with HP since 1987. He received a BSc

degree in computer science in 1979 from the

University of Calgary. Tom was born in Taber,

Alberta, Canada. He is married and has five

children. In his leisure time he enjoys hiking,

camping, cross-country skiing, and researching

family history.

Volume 50 • Number 1 • Article 3
November 1, 1998

 1998 Hewlett-Packard Company

22
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 1

The current UNIX-based HP RTAP architecture.

User Interface Tools
(Graphics, Plots,

Alarms)

Starlite

Motif

IGLOO

D
B

 Poller

Configuration
Tools

HP RTAP Core
(Environment

and Database)

Scan System

X

configuration tools for core and graphical components.
The GUI is built on an HP graphics library that is provided
for customers to build their own graphical applications.
The GUI library, in turn, is built on X-Windows and Motif.
Early versions of HP RTAP were on the X10 windows sys-
tem. Later, ports were done to X11 and Motif. Customers
were protected from changes because they were hidden
inside the HP graphics library.

The HP RTAP product was first introduced on the HP-UX
operating system and soon became known for its open
systems focus. It is now supported on several of the most
popular UNIX platforms.

This article describes some of the modifications we made
to the HP RTAP product to port it to the Windows NT
environment. The goals we had for this project were to:

� Offer the Windows NT market a supervisory control and
data acquisition system with the power and flexibility of
HP RTAP

� Enhance the usability of the UNIX product by allowing
full integration with the Microsoft desktop on the client
side

� Support HP corporate goals for growth and integration
of both UNIX and Windows systems, taking advantage
of the strengths of each.

Moving to Windows NT

Microsoft Windows NT has recently been gaining accep-
tance as a platform for industrial automation systems.
However, as is often the case, there is a difference of

opinion among users. Some users with mission-critical
applications are not ready to move to Windows NT. The
UNIX system, on the other hand, has been on the market
for over 10 years and is a mature, stable, and robust oper-
ating system. Other users are ready to embrace the Micro-
soft world fully because this environment better satisfies
their need to incorporate real-time information into the
decision making process. Still others want to keep the
UNIX operating system for their servers and provide the
benefits of the Microsoft world on their desktops.

We considered all this information in our plans for a
product on Windows NT. Our first major decision was to
split the product structure along client/server lines. There
was general agreement that since Microsoft dominates
the desktop world, HP RTAP needed a Windows interface.
On the other hand, opinion was still divided on the server
side, so we chose to support both UNIX and Windows NT
operating systems for servers and allow our Windows
clients to connect to both.

HP RTAP is well known and respected for its core data
server, so it was ported to Windows NT with existing
functionality but with a different graphical user interface.
Although third-party products are available to allow a
port with the Motif look and feel, we decided to rebuild

Glossary

ActiveX. A COM-based framework for software component
integration. An ActiveX Control is a prebuilt, reusable software
component that performs a particular function (often visual and
interactive) within the context of container applications such
as VisualBasic or a Web browser.

CORBA (Common Object Request Broker Architecture).
An object request broker that provides the services which
enable objects to make and receive requests and responses
in an object-oriented distributed environment.

COM (Component Object Model). A binary programming
interface standard that allows components written separately
(even in different languages) to communicate correctly.

DCOM (Distributed Component Object Model). The COM
distributed wire protocol.

OLE (Object Linking and Embedding). Windows’ compound
document protocol that allows one document to be embedded
within or linked to another document.1

Volume 50 • Number 1 • Article 3
November 1, 1998

 1998 Hewlett-Packard Company

23
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

parts of the HP RTAP user interface and purchase other
parts based on the new Microsoft model for component
software.

With this philosophy, we created a graphical user inter-
face based on Microsoft COM (component object model).
It provides powerful drawing and animation capabilities,
Visual Basic for applications, and a set of industrial
ActiveX controls that users can supplement by adding
their own components. For example, a user can select an
ActiveX control that looks and acts like a gauge to keep
track of filling a vessel. We also added a new configura-
tion tool that leverages from available Microsoft usability
features and emphasizes the class-based nature of the HP
RTAP database. This allows complete integration with
other tools on the Microsoft desktop. All client-side tools
use a new ActiveX component to communicate with the
HP RTAP server on either Windows NT or UNIX operating
systems.

In addition to ActiveX, another important Microsoft
technology is the ODBC (Open Database Connectivity)
standard for relational databases. Users want to create
reports using their regular spreadsheet, database, or word
processor tools. They do not want to learn a special report
generator. The new HP RTAP ODBC interface takes advan-
tage of the class-based nature of the HP RTAP database,
allowing useful queries of similar points as if they were
relational tables. For example, HP RTAP will now accept
an SQL SELECT statement for a query like “show me the
site locations for all gas wells having a flowing tempera-
ture greater than 20 degrees Celsius.”

We emphasize that the PC client-side environment is truly
a Microsoft world so that all the RTAP PC clients inte-
grate perfectly with Visual Basic 5, Visual C++ 5.0, Delphi,
Access, Excel, and all the other tools and applications
users expect. Access to the HP RTAP database and the
rest of the server environment is through ActiveX compo-
nents and ODBC. Users get all the benefits of integration
on the desktop and access to the servers on either NT or
UNIX systems. This allows existing customers with UNIX-
based HP RTAP systems to add the PC clients whenever
they are ready.

An important building block that enables this client/server
split is the HP RTAP API ActiveX control (see Figure 2).
This ActiveX control is the mechanism by which all PC
clients connect and communicate with the server. All HP
RTAP database components are represented as objects

Figure 2

New HP RTAP clients based on Microsoft OLE.

HP RTAP
Database

HP RTAP
Configurator

Third-Party
OLE Tools

Development
Tools

Win32 Clients UNIX or NT Server

D
is

tr
ib

ut
ed

 O
bj

ec
t S

er
ve

r (
CO

RB
A

)

Pr
ox

y
O

bj
ec

t C
lie

nt
 (C

O
RB

A
)

RT
A

P
A

PI
A

ct
iv

eX
 C

on
tr

ol

with methods and properties like any other ActiveX object.
This enables the full power of the HP RTAP server-side
API, but with a much simpler object-oriented interface.
For example, Figure 3 shows a simple Visual Basic code
fragment for reading a database value. The API supports
more than simple reads and writes. It allows for more
complex operations such as caching and large grouped
data transfers. We chose to create a full object model,
allowing advanced functions such as configuration of the
database from a PC client through the ActiveX interface.

The interface seen by the user of the HP RTAP ActiveX
control is the familiar OLE-style interface seen in Visual
Basic and other desktop tools. Thus, a user, in say Visual
Basic, sees an OLE style API. On the other side of the
ActiveX control (hidden from the user) is the infrastruc-
ture for communicating with servers. We used CORBA
as the underlying platform because of its portability and
maturity.

Climbing the Learning Curve

Connecting PC clients was the largest technical challenge
that we faced in this migration project. Our development
team had years of UNIX experience, but ActiveX and
CORBA were new to us. We hired some local contractors
to alleviate this problem, but our collective learning curve
was still quite steep. The job turned out to be much bigger
and more difficult than we or the contractors expected.

One major challenge was to create an object model that
would represent all the aspects of HP RTAP and be ex-
posed to users (for example, database points and attrib-
utes). The interface had to be consistent and simple to
understand but powerful enough to support configuration

Volume 50 • Number 1 • Article 3
November 1, 1998

 1998 Hewlett-Packard Company

24
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 3

Simple Visual Basic code fragment for reading a database value.

’General declarations for the RTAP environment & db objects
Dim g_env as HPRTAPLib.Environment
Dim g_db As HPRTAPLib.Database
Dim g_pt As HPRTAPLib.Point
Dim g_attr As HPRTAPLib.Attribute

’Open a connection to the environment and the database when the
’form is loaded. The environment name and host computer are
’specified in the properties of the RTAP Custom Control.

Private Sub Form_Load()

’Connect to the RTAP environment
Set g_env = HpRtap1.Environment
g_env.Connect

’Connect to the database and read the current value
If g_env.Connected Then

Set g_db = g_env.Database
Set g_pt = g_db.PointByAlias(”PT–101”)
Set g_attr = g_pt.Attribute(”process value”)
Label1.Caption = g_attr.Value

 End If
End Sub

and fast access to values. The resulting object model has
about 40 classes and over 300 methods and properties.

After the object model was defined, we had to implement
it in the ActiveX control and CORBA layers. Aside from
learning how ActiveX and CORBA work, developing this
code was not particularly difficult. We were familiar with
the HP RTAP API, and programs that receive CORBA
requests on the server side were fairly straightforward to
write and implement.

Another challenging area was the memory allocation
model. Both COM and CORBA base their memory
schemes on the concept of reference counts. In principle,
it is simple: for every created object, a counter is main-
tained on how many times the object is used, and when
that count drops to zero, it is safe to delete the object.
However, in practice it is not so simple, and an error can
have serious consequences. Freeing an object too soon
can cause invalid memory references later, leading to a
disastrous failure of the program. Failing to free the object
can create a memory leak, which leads to a slower death
but is still fatal in a program that must run for weeks or

months. In particular, CORBA implementations do not
automatically forward or synchronize reference counts
between the client and the server, which became quite
difficult for us to manage.

Our first implementation uses CORBA because it is a
mature technology and is available on Windows NT and
all the UNIX platforms that we support.

Scanning the Results

Porting the HP RTAP server to Windows NT maintains all
its UNIX functionality and existing API. It should be noted
that this server, even on a PC, still retains some of its UNIX
behavior. We believe this is a reasonable trade-off because
it provides the following advantages:

� It maintains compatibility with UNIX servers, allowing
the same clients to work with both.

� It gives customers a migration path for their current
and future server-side applications.

� It provides scalability that PC-only software cannot
match.

Volume 50 • Number 1 • Article 3
November 1, 1998

 1998 Hewlett-Packard Company

25
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

These modifications to HP RTAP met our goals for the
project.

Conclusion

This migration from UNIX to Windows NT has taught us
a lot about new technologies that will be useful in future
development efforts. In particular, we learned two sur-
prising lessons about this type of project.

First, it is not any easier to develop complex software
on Windows NT than it is on a UNIX operating system.
There is a tremendous framework available for making
applications easier for users to use, and the infrastructure
is definitely improving for developers as well—at least for
certain kinds of applications. For the kinds of industrial
automation software that we write, our development
schedules cannot be made significantly shorter just
because we are on Windows NT.

Secondly, we have learned useful lessons about using
third-party software to develop applications. We have
gone from an environment in which we are in control
of everything to one in which we rely on many pieces of

software from at least six vendors (not including Micro-
soft). This has many implications for release scheduling,
documentation, and reliability of the end product. It has
caused problems and will undoubtedly continue to do so.
However, in the final analysis, we are convinced that
there are many gains to be made from Microsoft’s compo-
nent software model and from generally being able to use
software created by others.

Reference

1. A. Freedman, The Computer Glossary, AMACOM, 1995, p. 276.

UNIX is a registered trademark of The Open Group.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

http://www.hp.com/go/ais

Volume 50 • Number 1 • Article 4
November 1, 1998

 1998 Hewlett-Packard Company

26
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Integrating Real-Time Systems with Corporate
Information Systems

Integrating distributed systems involves more than just connecting different

communications technologies. It also involves connecting different information

environments.

Traditionally, supervisory control and data acquisition systems have been

designed to meet operational needs in the field and on the factory floor. Little

attention has been given to how well these systems will integrate with the

corporate information infrastructure. Today, every industry has felt the impact

of several major trends: globalization, consolidation, deregulation, rapid cycle

times, compressed time-to-market, and new products and services. The net

effect is that “islands of automation” in the field or factory no longer meet

business needs. Since 1990, HP has been exploring new ways to build

distributed systems that integrate measurement and control systems with

the business enterprise.

The Information Gap

Linking real-time systems to an enterprise system is a difficult undertaking,

usually requiring custom code at each end. However, such links will have to

become pervasive to give employees access to the real-time information they

need to make timely business decisions with confidence.

It is common to have two central information systems: a traditional man-

agement information system (MIS) for business functions and a technical

information system (TIS) for mission critical real-time measurement and

control. These systems are typically managed by separate groups.

Establishing connections between the two systems is relatively simple. The

real challenge is achieving true information integration. This is because of

the four types of gaps between the MIS and TIS worlds (see Table I).

�����
 �� �����	�

������ �� ���	�
����

Volume 50 • Number 1 • Article 4
November 1, 1998

 1998 Hewlett-Packard Company

27
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Table I
Information Gaps between Management Information Systems and Technical Information Systems

Type Management Information System Technical Information System

Time Months, weeks, days Seconds or less

Information Transactions Real-time events

Execution Oriented to planning and scheduling Oriented to measurement, control, and
engineering

Culture Driven by business needs Driven by process needs

The width of these gaps is further illustrated by a recent
study in which 43 percent of the companies surveyed
reported only minor or occasional dialog between their
management information systems and technical informa-
tion systems groups.1

Bridging the Gap

Numerous deployed and emerging technologies promise
to provide information integration (see Figure 1).

Most of the familiar technologies are in the lower left
corner, offering point-to-point connections as opposed to
real integration. These include the original DCE products
and the more recent CORBA and DCOM technologies,
which enable objects to exchange messages over a net-
work. However, interoperability and standard objects are
still a long way off in these technologies.

Figure 1

Integration technologies.

Integration

Connection Technologies

CORBA
DCOM
DCE

ActiveX
Web pull Web push

IP Multicast

Middleware

Publish and
subscribe

Point-to-point Point-to-multipoint Peer-to-peer

CORBA
DCE
DCOM

Common Object Request Broker Architecture
Distributed Computing Environment
Distributed Component Object Model

From an end-user’s perspective, better integration is
achieved by the Microsoft ActiveX component model.
This provides a substantial level of desktop integration,
allowing sophisticated applications to be built from mod-
ular components. However, ActiveX still does not serve
the total integration needs of an enterprise.

The World Wide Web provides another promising form of
integration, with documents interlinked across a network
of systems. The huge popularity of the Web is encouraging
rapid extensions to the technology, including dynamic
content of web pages and push rather than pull distribu-
tion. However, building large distributed systems without
managing huge numbers of point-to-point connections
requires a true peer-to-peer communications environment.

New Connections

The publish/subscribe messaging model implements a
scalable peer-to-peer communication architecture. It sets
up an information pool in which publishers broadcast
information identified by topic and applications subscribe
to receive messages of interest. This is built on top of the
Internet Protocol, allowing access to the large installed
base of TCP/IP networks.

Information Integration

All these technologies achieve varying degrees of connec-
tion but fall short of true information integration. A new
class of software, often called middleware, is emerging
to connect MIS applications, such as SAP’s R/3, to real-
time systems. These applications are built on top of the
connection technologies and provide an additional degree
of integration.

When only two applications need to be integrated, it is
tempting to build a simple custom interface. However, as
the number of applications increases, this approach results

Volume 50 • Number 1 • Article 4
November 1, 1998

 1998 Hewlett-Packard Company

28
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

in several different interfaces, making development and
maintenance difficult. Instead, properly designed middle-
ware implements a software bus so that each application
shares a single interface to the bus. Good middleware also
provides a rich set of object-oriented features that are
reused by each application. Such features include easy
graphical configuration, object model reconciliation, data
transformations, flexible triggers, one user interface for
integrating multiple products, code reuse to simplify
adaptation to new applications, spooling and caching
of data, diagnostics and message tracing, and failure
detection and recovery.

HP Enterprise Link2 currently integrates real-time systems
with the SAP PP-PI and PM modules and with the Oracle
database.

Putting It All Together

With all these technologies and products to choose from,
the challenge is to decide which one to use for a particular
distributed system. As for most classes of problems, there
is no single “one-size-fits-all” solution. Rather, each of
these technologies has a role to play in linking front-line
measurements to backroom systems, allowing users
to have access to the real-time information they need.
Examples of these products include:

� The HP RTAP (real-time application platform) super-
visory control and data acquisition system is a complete
software framework for building industrial automation
systems. It also serves corporate needs via the HP
Enterprise Link product.

� A desktop ActiveX interface that uses CORBA for
communications with RTAP servers running on a
variety of UNIX platforms and on Microsoft
Windows NT.

Conclusion

There are many existing and emerging connection tech-
nologies that help to build distributed systems. However,
integration means much more than just connection. On
top of any connection technology, considerable work is
needed to achieve real information integration. Middle-
ware products help to fill this gap.

One important factor will characterize the successful
companies of the future: the ability to provide real-time
information to decision makers at all levels, anywhere,
any time. The integration of mission-critical, real-time
applications with corporate information systems will be
essential.

References

1. C. Moore, “IT in the Electric Power Industry,” Information

Technologies for Utilities, September 1996, pp. 48-52.

2. K. Jennyc, “Linking Enterprise Business Systems to the
Factory Floor,” Hewlett-Packard Journal, May 1998, Vol. 49,
no. 2, pp. 62-73.

UNIX is a registered trademark of The Open Group.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Oracle is a U.S. trademark of Oracle Corporation, Redwood City, California..

�����
 �� �����	�

Author’s biography appears on page 21.

������ �� ���	�
����

Author’s biography appears on page 21.

http://www.hp.com/go/ais

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

29
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

New Approaches to Creating and Testing
Internationalized Software

Creating high-quality software that runs in any language is a big challenge. By

changing our development process to stress early defect detection and by using

the World Wide Web as a collaboration tool, we have dramatically improved

the quality of our internationalized software.

Most software companies want to sell their software in every country

in the world. Since users prefer to use software in their native language, it

makes good marketing sense to develop software that can run in those

languages. After the initial investment has been made to write and test

software in English, a software company can make significant profits by

reselling the same software to other countries if the cost of conversion into

other languages can be kept low.

Traditionally, software testing occurs at the end of the development cycle. This

kind of testing works against creating high-quality software. When bugs are

found late in the cycle, there is little time to fix them. This is especially true

in internationalized software development where the developers, testers, and

translators are spread all over the world. Our new approach allows a team

�	��� �� ��
�����

A software design engi-

neer at the HP Corvallis

Imaging Operation, Harry

Robinson was a test engineer for the HP

Common Desktop Environment internation-

alization project. He recently left HP to be-

come a lead test engineer at Microsoft Corpo-

ration. He has a BA degree in religion (1980)

from Dartmouth College and BSEE (1985)

and MSEE (1988) degrees from Cooper

Union. He is interested in all aspects of soft-

ware testing. Born in Staten Island, New

York, he is married and has three children.

�	�
	� �� ��	
�	
	���

Sankar Chakrabarti is a

member of the technical

staff at the HP InkJet

Business Unit. Currently, he is responsible for

developing software for a print quality testing

tool. Sankar received a doctorate in chemistry

in 1974 from the Tata Institute of Fundamen-

tal Research in Bombay, India. He joined HP

in 1981 after receiving an MS degree in com-

puter science from Oregon State University.

Born in Azimganj, West Bengal, India, Sankar

is married, has two children, and enjoys

traveling and hiking.

�	��� �� ��
�����

�	�
	� �� ��	
�	
	���

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

30
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

to test the software during the entire process and to
release foreign language versions simultaneously with
the English version.

Developing Internationalized Software

The I18N Approach

One common method of creating internationalized soft-
ware at a reasonable cost is called I18N.* The essence
of the I18N approach is to separate the executable code
from any character strings that the user will see. User
messages are placed into files called message catalogs.
Two numbers, the set number and the message number,
index each string in the message catalog. The executable
code uses these numbers to retrieve strings.

For example, every C language programmer knows the
classic hello, world program:

 hello.c:

 main()

 {

 printf(”hello, world\n”);

 }

In the I18N methodology,1 this program would be written
as follows:

hello.c:

 main()

 {

 my_cat=catopen(”hello.cat”, NL_LOCALE);

 printf(catgets(my_cat, 1, 5,

 ”hello, world\n”));

 catclose(my_cat);

 }

The program accesses the string “hello, world\n” by retriev-
ing set 1, message 5 of the “hello.cat” message catalog file.

 hello.cat:

 $set 1

 5 hello, world\n

The string “hello, world\n” that appears in the printf state-
ment is a default string that is used if no message catalog
file can be found.

Separating executable code from user-visible strings is
very useful when working with translations. If we want to
run our hello, world program in French, a translator merely
changes the string in the message catalog to:

 $set 1

 5 bonjour, le monde\n

* I18N = I[nternationalizatio]N. 18 is the number of letters between the I and N.

Figure 1

A typical application Help menu in (a) English and (b) French.

(a) (b)

Users running the hello.c program with the translated
message catalog will see bonjour, le monde as their output.
No changes are made to the executable code to support
the French version. Only the user interface strings need to
be translated. The executable code remains unchanged.

Figure 1 shows an example of what a typical application
Help menu looks like in both English and French. The
same executable code was used to generate each menu,
and only the message catalog was changed.

Process Flow

The idea behind creating internationalized software is con-
ceptually simple, especially when the number of languages
is small and the application is as simple as hello.c. On the
other hand, producing real-world applications in a dozen
languages can pose several challenges to a development
team.

The shaded area in the diagram in Figure 2 shows the
traditional process flow for developing an international-
ized application.

1. The programmers write an application with the appro-
priate I18N calls for fetching strings from the message
catalog. They also produce the original message cata-
log in English.

2. The message catalog is sent to translators (called
localizers) who translate each string into a target
language, such as French.

3. The application (with the original message catalog) is
delivered to the test team, who verify that everything
works correctly.

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

31
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 2

Process flow for developing an internationalized application.

Solution 1
Test with

Artificial Translations

Develop I18N Code
Using the Default
Message Catalog

Test I18N Code
Using the Default
Message Catalog

Solution 3
Create Language-
Independent Tests

Solution 4
Publish Translated
Images to WWW

Test I18N Code
Using the Translated
Message Catalogs

Translate the
Message Catalog into
Multiple Languages

Solution 2
Verify Message

Catalog Structures

Traditional Process Flow

Activities inserted into the traditional process flow to improve software quality.

4. The localizers provide the translated message catalogs
to the test team. The testers must now verify that the
application works in the intended languages.

The Team

Our development team designed and implemented the
graphical user interface for Hewlett-Packard’s UNIX

workstations. This interface is made up of several applica-
tions and runs in a dozen different languages: English,
French, Spanish, Italian, German, Swedish, Korean, two
forms of Japanese, and three forms of Chinese. The sheer
scale of our work causes problems in creating internation-
alized software because of the wide range of skills and
resources needed and the distances between involved
parties.

The Programmers. Our entire programming team is lo-
cated in Corvallis, Oregon. They are software specialists
and are not expected to know multiple languages. After
they have written their internationalized code, they must
wait for the message catalogs to be translated before
they can verify that their I18N features are correctly
implemented.

The Localizers. Our localizers live in widely separated
areas of the world. Most of them are contractors who
have never met the rest of our development team. The
localizers are not expected to have programming or test-
ing expertise. In fact, they may not even have UNIX work-
stations on which to run the applications. Often, because
the applications they are translating are still in develop-
ment, they are unlikely to be familiar with the application
when they are creating their translations.

The Testers. The test team is located in Corvallis. They
are test specialists and are not expected to speak multiple
languages. Although I18N methodology is a boon for pro-
grammers, it can be a nightmare for the testers. In regular
software testing, there is rarely enough time to test an
application thoroughly. In the I18N arena, the test team
must provide assurance that the software operates cor-
rectly in the dozen languages in which it will run. Further-
more, it is very difficult to verify correct operation in a
language that one does not speak because mistakes that
would be obvious to a native speaker can easily pass
unnoticed by the test team.

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

32
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Challenges and Solutions

We have developed several strategies to deal with many of
the challenges we have encountered while creating I18N-
enabled code.

Challenge 1: Developers cannot test the I18N-enabled
code easily. There are several common mistakes people
make when writing I18N-enabled code. One mistake is to
neglect to leave enough room in message buffers for the
translated message string. Some languages, such as Ger-
man, require more space than English for the same mes-
sage. The length of the translated message string cannot
be known until run time, though a good rule of thumb is
to allow for 60% text growth during translation. If a mes-
sage string still exceeds the buffer length provided, the
program should usually truncate the string.

A second common mistake is when developers neglect to
accommodate languages, such as Japanese, that require
two bytes to store a single character. Most Western lan-
guages require only one byte of storage per character,
but several Far Eastern languages have large character
sets and need more than one byte per character. If the
code does not handle double-byte characters, the results
could range from corrupted characters to a crash of the
application.

It would be very handy to provide a way to test I18N-
enabled code early in the development process, perhaps
even as soon as the code is written. The chief difficulty in
early testing of I18N-enabled code is that an actual trans-
lation may not be available. Message catalog translation
is time-consuming. The development team may have to
wait several weeks before getting a translated message
catalog back from a localizer, losing precious testing and
debugging time.

Solution 1: Test with artificial translations.2 Our solution
is to construct artificial message strings that mimic the
kinds of problems we see in real translated message
strings. This instantaneous creation of a translated mes-
sage string against which to test our software provides
us with quick feedback about how our application will
perform with translated components.

For instance, to simulate languages with long text strings,
we created a message catalog in a language we call the
Swedish chef. Using a freeware Internet utility called the
Encheferizer,3 we appended long nonsense strings onto
each English string. The results can be seen in Figure 3.

Figure 3

Nonsense strings appended to English words to create the
Swedish chef language.

Each Encheferized string is at least double the size of the
corresponding English string.

Likewise, to simulate double-byte characters such as
those used in Japanese, we used a small program that
maps ASCII characters into a double-byte format as
shown in Figure 4. This translation was easy to use and
allowed us to detect whether the code handled double-
byte strings properly.

Despite these tools, many developers still felt reluctant
to test in a language that they did not know. To overcome
this reluctance, we demonstrated that it is possible to test
even in the worst case imaginable: we created a Klingon
target language.4 Words, chosen at random from a Klingon
version of Shakespeare’s Hamlet, were inserted into an
application’s message catalog as shown in Figure 5. Even
though this version of the application might not make

Figure 4

Text strings mapped into a double-byte format to simulate
double-byte characters.

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

33
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 5

An excerpt from a Klingon version of Hamlet.

sense to anyone, it can still be tested. This test case pro-
vided one more level of confidence to our testing.

In all three cases, we used small scripts to create message
catalogs from the default English catalog so that the
“pseudo-translated” messages were available as soon as
the code was ready to be tested (see Figure 2). Because
the translations we chose were simple to use, somewhat
whimsical, and not at all intimidating, programmers found
it easy to perform I18N testing.

Challenge 2: Translators can introduce structural defects
into the message catalogs. Each message catalog has a
structure. Sometimes the structure is as simple as the set
and message numbers, and at other times it can be com-
plex. If the structure of the message catalog is changed
during translation, the software will not behave correctly.
For instance, suppose the original English message cata-
log contains:

 $set 1

 5 hello, world\n

and the French translation contains:

 $set 1

 55 bonjour, le monde\n

The message number has been inadvertently changed
from 5 to 55. The application will not work correctly be-
cause it cannot find the translated string. These types of
mistakes are very hard to catch because of the complexity
of some message catalog structures.

Solution 2: Verify message catalog structures. We created
small utility programs to verify catalog structures auto-
matically.5 In our organization, we call these utilities
poka-yokes after the Japanese quality assurance method
that inspired their use.6 These programs often take less
than an hour to write. One typical poka-yoke program
might check that each message in the translated catalog
corresponds to a message in the original English catalog.
Such a check will detect the error in the above example
in which the message number is changed from 5 to 55.

These utilities are surprisingly effective. When we ran the
utilities on eight applications that had been translated into
twelve languages, we found 833 defects in the message
catalogs. An even bigger benefit was that the utilities did
not need an application. The message catalogs could be
checked as soon as they were received from the localizers,
and any defects could be fixed immediately.

Poka-yoke scripts are also very useful for finding mis-
takes overlooked by visual verification. For example, in
the French menu in Figure 1b there is an error in the
“shortcut keys” or mnemonics designated for the last two
items in the menu. Shortcut keys must be unique within a
menu. The letter A is designated as the shortcut key for
both of the last two items, violating the uniqueness rule.
People often miss these type of errors, but a poka-yoke
script can catch them automatically.

Challenge 3: Testers cannot manually test each applica-
tion in a dozen languages. After the localizers return the
translated message catalogs, it is time to system test the
applications in each language. Testing software applica-
tions thoroughly is always a challenge. Trying to test the
same application in twelve languages can be a catas-
trophe.

For instance, if we wanted to test the output of the hello.c
program listed above, we would typically create a test case
that looked something like this:

Step 1: Set the target language to English
Step 2: Run the hello.c program
Step 3: Verify that the output is hello, world

If we wanted to test the French version, we would need
to change the test case:

Step 1: Set the target language to French
Step 2: Run the hello.c program
Step 3: Verify that the output is bonjour, le monde

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

34
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

What do we do when we need to test the same program
in the other ten languages? Will we need to write a dozen
versions of each test? Also, how will we run the tests?
Hiring additional people to test the foreign language
versions is costly, and traditional record-and-playback
test methods do not port well across languages. What is
needed is an automated test method in which the cost
of testing does not become prohibitive as the number
of supported languages grows.

Solution 3: Create language-independent tests.7 We deter-
mined that I18N-enabled tests were needed to test I18N-
enabled applications. So, instead of creating a multitude
of static tests that would each check for a different string
such as hello, world or bonjour, le monde, we created tests
that could use the application’s own message catalogs
to verify output. When an internationalized test needs
to verify a program’s output, it retrieves the expected
message from the message catalog just as the application
does. The new I18N form of the automated test for the
hello world program would look as follows:

Step 1: Set the target to the desired language
Step 2: Run the hello.c program
Step 3: Retrieve the string stored in set 1, message

of hello.cat
Step 4: Verify that the program’s output matches the

retrieved string
Step 5: Choose the next language to test
Step 6: Repeat until all languages have been tested

This approach can be used to verify that the program
is working correctly by iterating through all available
languages. Internationalized tests are particularly useful
in automatically verifying basic functionality.

Challenge 4: Testers cannot always detect errors in unfa-
miliar languages. One significant problem in testing inter-
nationalized software is that testers unfamiliar with a lan-
guage usually cannot see errors that might be obvious to

Figure 6

Part of an application window in Japanese containing the
correct string preceding the (V).

a native speaker of the language. For example, Figure 6

shows part of an application window in Japanese. The
string in front of the (V) is transliterated Hyoji and means
View. Figure 7 shows that same window except that the
string in front of the (V) has been corrupted by a typo in
the script that was used to compile and build the applica-
tion. Thus, the string in Figure 7 is meaningless.

This corruption error is immediately apparent to someone
fluent in Japanese. Yet, how many non-Japanese speakers
would recognize the error, especially since the corrupted
form of the string is still in Japanese?

As mentioned above, we don’t require that our software
testers know multiple languages, and it is certainly un-
likely that we could find a test team fluent in the dozen
languages our software supports. On the other hand, the
localizers who do speak those languages are unlikely to
see the error because they do not have the current revi-
sions of the code or the UNIX workstations on which to
run the software. Even if they did have the code and a
workstation, it would be difficult to know whether they
had adequately exercised the application to display all
the relevant screens. Previously, one common solution
was to fly the translators to our Corvallis site and have
them spend several days watching testers execute tests
for their particular language. This method was inconve-
nient and costly.

How could we provide a medium of collaboration be-
tween the testers who run the software and the language
experts who could judge whether the output was correct?

Solution 4: Publish translated images to the World Wide
Web.8 The World Wide Web can be used to distribute test
outputs to those who can help judge if the output looks
correct. We call this approach a “traveler tour” because it
reminds us of a traveler who visits other countries and
then returns home and displays the pictures taken on the
trip.

Figure 7

The same character string shown in Figure 6 but with an
error in the string preceding the (V).

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

35
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 8

HTML version of an English help page used for comparing
screen images during automated testing.

Using the I18N test techniques mentioned in solution 3,
we set the target language and drive the application to
display various user screens. As each screen is displayed,
we capture the image to a file. After all desired images
have been captured in all languages, we run a script that
creates HTML pages automatically from the images.

Figures 8 and 9 show the HTML version of English and
Japanese help pages. The format allows Web page visitors
to move easily between the different language versions of
an image, as well as move through the sequence of images
in a single language.

After the application’s images have been captured and
moved to the World Wide Web, we invite interested parties,
such as the translators and our partner labs, to access the
Web pages and give us feedback about whether the trans-
lated applications are correct. This arrangement is very
useful to all the teams. The testers can ensure that all the
relevant screens are displayed, and the language experts
can view the output without the expense and administra-
tive overhead of maintaining workstation test systems at
their sites.

Figure 9

HTML version of a Japanese help page used for comparing
screen images during automated testing.

The traveler tour approach also helps localizers translate
the original default English messages into the desired
foreign languages. Previously, the localizers were only
provided with the message catalogs, which were difficult
to translate because the user messages lacked the context
of the application. Now, we send the localizers a traveler
tour of the application in English along with the message
catalogs.

Results

By changing our development and testing processes and
creating tools to support early detection of defects, we
have revolutionized the way internationalized software is
developed at Hewlett-Packard. With these changes:

� Developers can test the I18N features of their code
immediately.

� Poka-yoke utilities can catch message catalog defects
at the translation stage.

� Language-independent test suites permit automatic
testing in all languages.

Volume 50 • Number 1 • Article 5
November 1, 1998

 1998 Hewlett-Packard Company

36
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

� Traveler tours allow testers and localizers to work
together to detect subtle translation bugs.

This new approach to developing I18N software has re-
duced the resources needed for testing by a factor of five.
It has eliminated the travel costs previously incurred in
bringing translators to the development site to assist in
testing. The approach has dramatically increased the
quality of our internationalized software while at the
same time decreasing the time devoted to development,
translation, and testing.

Finally, our translators and our partner labs are so pleased
with the outcome of this work that they have asked that
these changes be incorporated into our regular delivery
mechanisms.

Conclusion

Internationalized software has great advantages for the
marketplace and is a worthwhile and growing trend, but
high quality levels can only be achieved if international-
ization is integrated with the rest of the software develop-
ment process. Current development models do not
encourage easy integration of coding, localizing, and
testing. We have designed tools to promote early detec-
tion of defects and collaboration among the different
groups involved in software creation.

Acknowledgments

The authors would like to thank Ken Bronstein, Arne
Thormodsen, Dan Williams, and Barbara Wingert-Burbach
for their help in developing and promoting the techniques
used in this testing program.

References

1. T. McFarland, X Windows on the World, Prentice-Hall, 1996.

2. H. Robinson and A. Thormodsen, “Parlez-Vous Klingon?
Testing Internationalized Software with Artificial Locales,”
Proceedings of the 1997 Pacific Northwest Software Quality

Conference, pp. 185-195.

3. J. Hagerman, Ze Sveedish Chef, http://www.almac.co.uk/chef/
chef.html

4. M. Okrand, The Klingon Dictionary: English/Klingon Klingon/

English, Pocket Books, 1992.

5. H. Robinson, “Using Poka-Yoke Techniques for Early Defect
Detection,” Proceeding of the Sixth Annual Conference on

Software Testing, Analysis and Review, 1997, pp. 119-142.

6. S. Shingo, Zero Quality Control: Source Inspection and the

Poka-yoke System, Productivity Press, 1986.

7. S. Chakrabarti and H. Robinson, “Testing CDE in Sixty Lan-
guages: One Test Is All It Takes,” Proceedings of the Fourteenth

International Conference on Testing Computer Software, 1997,
pp. 419-428.

8. S. Chakrabarti and H. Robinson, “Catching Bugs in the Web:
Using the World Wide Web to Detect Software Localization
Defects,” Proceedings of the Tenth International Software

Quality Week, 1997, p. 7A2.

UNIX is a registered trademark of The Open Group.

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

37
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Comparison of Finite-Difference and SPICE
Tools for Thermal Modeling of the Effects of
Nonuniform Power Generation in High-Power
CPUs

This paper describes a thermal study of junction temperature variation across

the surface of a large CPU resulting from nonuniform power generation. Results

from Flotherm finite-difference thermal analysis software were compared to

results from a SPICE simulation. Both simulations provided results close to

measured values. Each tool offered strengths and benefits in different areas.

Because of unevenly distributed functionality in large integrated circuits,

power dissipation can vary significantly across the surface of a device. In very

high-power devices, these power variations can lead to significant variations in

junction temperature across the die surface. If these temperature gradients are

not fully understood or anticipated, product reliability may be degraded.

The HP PA 8000 microprocessor is a high-performance implementation of

HP’s PA-RISC computer architecture.1 It is the central processor of the

top-performing models of the HP 9000 C-class and J-class workstations

and K-class servers. With a die size of 17.7 mm by 19.7 mm, it is the largest

integrated circuit designed by HP to date. At the announced operating

������� �� ������

Jeff Deeney is a lead ther-

mal design engineer for

packaging development at

HP’s High-Performance Systems Division. He

joined HP in 1981 after receiving his BSME

degree from Washington State University. He is

married, has three children, enjoys backpack-

ing and climbing, and is active in public land

use issues.

�� ��

	�� �	����

Mike Ramsey is a member

of the technical staff in-

volved with presilicon veri-

fication of advanced processors at HP’s VLSI

Technology Center. With HP since 1980, he

received his BSEE and MSEE degrees from

Texas A&M University in 1979 and 1981. He

is married, has a son, and is a student of Tae

Kwon Do.

������� �� ������

�� ��

	�� �	����

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

38
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 1

Fan/heat-sink forced air cooling solution.

frequencies of 160 MHz, 180 MHz, and 240 MHz, its power
dissipation is also quite high. Removing this power pre-
sented challenges at both the chip and system levels and
was anticipated early in the design process. However, re-
sults were still not without surprises. Specifically, the large
size of the PA 8000 die and the nonuniform distribution of
its heat-generating circuits led to unanticipated tempera-
ture differences across the die. The study described in
this paper investigated how the thermal characteristics
could be better modeled.

The PA 8000 is packaged in a 1089-pin ceramic land grid
array (LGA) using solder bump bonding with epoxy under-
fill onto an alumina substrate. The back of the die is at-
tached to a sintered copper-tungsten lid by means of silver-
filled epoxy for enhanced thermal performance. The entire
package is socketed onto its host printed circuit module.
Different heat sink solutions are used in the various sys-
tems. In the C-class workstation, the PA 8000 is cooled by
a fan/heat-sink forced air cooling solution (see Figure 1).
In the J-class workstation and K-class server, heat is con-
ducted through a three-pipe heat pipe assembly cooled by
the cabinet’s forced air flow (Figure 2).

Conventional IC design methodology partitions the func-
tions of the PA 8000 into localized units, as shown in
Figure 3. The floating-point processing unit is one such
unit. The floating-point unit is a specialized coprocessor
that delivers improved performance to applications using
floating-point arithmetic operations. It is the largest source

Figure 2

FPO

Heat pipe mounted to printed circuit board.

Figure 3

System Bus Interface

Integer
Register
Stacks

Integer
Functional

Units

Instruction
Address and

Control
Registers

Data Cache
Interface

Instruction
Reorder
Buffer Floating-

Point
Functional

Units

In
st

ru
ct

io
n

Ca
ch

e
In

te
rf

ac
e

TLB
Instruc-

tion
Fetch Unit

HP PA 8000 processor.

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

39
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

of heat in the PA 8000. The floating-point unit circuits nor-
mally dissipate power only when floating-point operations
are being executed. Since this results in large power supply
current transients, the floating-point unit can be configured
to dissipate power even when inactive.

The PA 8000 includes two circuit cells whose purpose is
to measure die temperature. Each of these cells contains a
serpentine metal trace connected between two dedicated
package pins. The resistance of these cells is temperature-
dependent. These temperature monitor (TMON) cells must
be calibrated for each die and package. The TMON cells
were placed on the die in locations dictated by available
pins. In retrospect, the placements were less than ideal.

During electrical characterization of the PA 8000, the
effect of floating-point unit power-on die temperature was
investigated. The TMON cells were instrumented and cali-
brated. Additional temperature measurements were made
at the package/heat-sink interface and of the ambient air.

Electrical power to the die was supplied by a character-
ization fixture. This fixture is a system of power supplies,
clock generators, a thermal chamber, and other instru-
ments controlled by a computer workstation. It allows
automated experiments and measurements to be per-
formed on a circuit.2

Package-to-ambient-air thermal conductivity was consis-
tent with previous experimental results as well as design
objectives. However, TMON temperatures during peak
floating-point unit power dissipation did not correlate with
the known die input power and die-to-package thermal
conductivity. The temperatures measured at the TMONs
were lower than expected.

SPICE Simulation Using Electrical Analogs

It was suspected that the TMON temperatures were not
representative of temperatures elsewhere on the die.
The TMONs are both located 4 mm from one edge of the
PA 8000 die. The floating-point unit, whose variable power
was the object of the investigation, occupies a 4-mm-wide
strip along the opposite side of the die. More than 10 mm
of silicon lie between the floating-point unit and the TMONs,
the only available means of measuring the floating-point
unit’s temperature. Thus, direct measurement of floating-
point unit temperature was not possible. Another method
of determining its temperature was needed.

Simulation of electrical circuits is used extensively in IC
development. Drawing an analogy between electrical
circuit theory and heat transfer made it possible to apply
familiar IC design tools to model heat flow in the PA 8000.
Heat flow can be modeled as electrical current flow, ther-
mal resistivity as electrical resistance, thermal mass or
capacity as electrical capacitance, and temperature as
voltage. Using these analogies, a circuit model was simu-
lated using HP Spice, a version of the public-domain
SPICE program. The model was constructed using Piglet,
a proprietary schematic capture and artwork design tool
with a long history in IC design at HP.

The circuit model divides the PA 8000 die into 360 rectan-
gular elements of 1 mm2 each (Figure 4). Each element is
connected to its neighbors through the thermal resistivity
of the intervening volume of silicon. Heat flow out of the
die is modeled by a resistive path from each element to a
common node representing the heat sink.

The thermal resistivity and thermal mass of the heat sink
are modeled by a parallel resistor and capacitor to a node
representing the ambient. A constant-voltage source sets
the ambient temperature. A current source into each ele-
ment of the die model models the power input into the
circuits of that element. Power input was based on early
simulations using Powermill software from Synopsys, Inc.
This simulation summarized the power dissipated in each
functional block at the top level of the design hierarchy.
Power was assumed to be evenly distributed across the
area of the block and a proportional current was sourced
into the model elements corresponding to the physical
location of the block.

Values for the components in the circuit model were
derived by one of two methods. Components located
between the package and ambient could be measured
experimentally. Because the temperature measurements
made using the TMON cells were suspect, components
inside the package had to be calculated from the physical
properties of silicon. The values used in the model are
listed in Table I.

Steady-State Analysis

The first SPICE simulation confirmed that temperatures
across the die varied greatly. As expected, the highest
temperature was found in the floating-point unit. The cor-
ners on the side opposite the floating-point unit exhibited

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

40
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 4

6.2�

75�

6.2�

0.0012 �F

6.2� 6.2�

GND

Left Right

Top

Bottom HS
Heat Sink Node

Current Source Modeling Power
Dissipated in Element

Thermal Capacity of
Die Substrate and
Package Lid

Thermal Resistivity to Adjacent
Die Element (4 places)

Thermal Resistivity
of Die Substrate and
Package Lid

SPICE cell.

the lowest temperatures. There was a surprising tempera-
ture difference of 21°C across the die.

Transient Analysis

A strength of SPICE is the analysis of transient phenomena.
This is a very common application in IC design. A transient
analysis of the PA 8000 thermal environment yielded in-
sight into how the large temperature gradient across the
chip was possible.

SPICE was modified to calculate an initial condition with
the floating-point unit power turned completely off (see

Figure 5). A short time into the simulation, the floating-
point unit power was turned on to its maximum value.

Over the first 0.5 second after the floating-point unit power
is applied, the floating-point unit temperature rises until
the shape of the temperature profile across the die is the
same as was found in the steady-state analysis. Subse-
quently, the differences in temperature between any two
points remain constant. The absolute temperatures, how-
ever, are not at their final values. With a time constant of
70 seconds, the temperature of the entire die continues to
rise towards the final temperature. This slow rise corre-
sponds to the heating of the package lid and heat sink.

Table I
Electrical Analogs of Thermal Elements

Component Method Value Electrical Analog

Thermal Resistance of Silicon Calculated 12.35 °C/W 12.35�
modeled as one 6.18�

resistor on each side of
the element

Thermal Mass of Silicon Calculated 0.0012 W/s⋅°C 0.0012 F

Thermal Resistance of the Die and
Package per mm2

Measured 64 °C/W 64�

Thermal Resistance of the Heat Sink Measured 0.5 °C/W 0.5�

Thermal Mass of the Heat Sink Measured 140 W/s⋅°C 140 F

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

41
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 5

50

40

30

20

10

0

18

15

12

9

6

3

0 0
3

6
9

12
15

18

X (mm)

Y (mm)

Re
la

tiv
e

Te
m

pe
ra

tu
re

 (
 C

)

Temperature gradient with floating-point unit power off
(from SPICE simulation).

The shape of the temperature profile as heat spreads out
from the floating-point unit explains the magnitude of
the gradient. Figure 5 illustrates the initial state with the
floating-point unit power off. Upon application of floating-
point unit power, the heat from the floating-point unit can
be seen to spread across the die. The advancing wave of
heat is attenuated until it stops approximately halfway
across the chip. Figure 6 depicts this condition. The tem-
perature profile of the remainder of the die is not affected
directly by the floating-point unit. Instead, it rises only
when the added power of the floating-point unit causes
the temperature of the package and heat sink to rise. The
final temperature gradient can be seen in Figure 7. This
leads to the conclusion that the thermal resistance across
the PA 8000 die is large enough relative to the thermal
resistance to the package that locations more than 5 mm
apart are effectively insulated from heat transfer.

Parameter Sweep

It seemed intuitive that the high temperature gradient
across the die was a result of the low thermal resistance
to the package. While the low resistance was important in

Figure 6

50

40

30

20

10

0

18

15

12

9

6

3

0 0
3

6
9

12
15

18

X (mm)

Y (mm)

Re
la

tiv
e

Te
m

pe
ra

tu
re

 (
 C

)

Temperature gradient profile established after floating-
point unit power-on (from SPICE simulation).

maintaining a low die temperature, it might also be causing
a less-than-ideal temperature gradient by reducing heat
flow across the die. How is the temperature gradient
across the die affected by the package thermal resistance?

A typical application of SPICE is to execute multiple sim-
ulations while varying some characteristic of the circuit.
This method was applied to the PA 8000 thermal model to
determine the effect of changing the thermal resistance of
the package. The resistors in the model that represented
the package thermal resistance were swept across a range
from one tenth of the typical value to 100 times the typical
value. The gradient across the die increased with higher
package resistance to a peak value. Beyond this peak,
heat flow across the die became significant relative to the
flow into the package and the gradient decreased with
higher package resistance. The value at which the peak
temperature difference occurred was 30 to 70 times the
typical value, depending on which two points were com-
pared. The die temperature reached unacceptable values
long before this. Thus, for large values of package thermal
resistance, the temperature gradient decreases with higher

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

42
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 7

50

40

30

20

10

0

18

15

12

9

6

3

0 0
3

6
9

12
15

18

X (mm)

Y (mm)

Re
la

tiv
e

Te
m

pe
ra

tu
re

 (
 C

)

Temperature gradient final state after heat sink heating
(from SPICE simulation).

resistance, but at typical values, lower package thermal
resistance is consistent with both lower die temperatures
and a lower temperature gradient.

Finite-Difference Modeling

Finite-difference techniques involve solving a set of
coupled, nonlinear, second-order partial differential equa-
tions. For solving thermal problems, the solution space is
divided into a series of discrete cells and the differential
equations for the conservation of momentum, energy,
and mass are solved for each cell. For the purpose of this
study, the Flotherm computational fluid dynamics software
from Flomerics was used. Although the most popular ap-
plication of Flotherm software is in the analysis of system-
level air flow and convection cooling, it also contains
features that allow accurate modeling of package-level
details and conduction mechanisms. For the purpose of
this study, a finite-element package such as Mechanica
by Ransa, Inc. or ANSYS by ANSYS, Inc. would also have
worked well.

Model Construction

Power generation on the PA 8000 device is roughly sym-
metrical about a centerline. This allowed a reduction in
complexity by creating a model representing only half of
the device geometries. This is accomplished by placing
the centerline of the half device against a surface that is
considered to be a perfect insulator. The original PA 8000
thermal model used a single planar power source evenly
distributed over the surface of the die. For our study, this
power source was replaced with several distributed power
sources. The top six highest-power-generating segments
of the PA 8000 chip were isolated and mapped onto the
half surface. The remaining elements contributed less
than 20% of the power and were fairly evenly distributed.
It was felt that their omission would not significantly alter
the temperature gradient across the die. Simplified power
distribution across the half surface of the chip in the high-
power and low-power states can be seen in Figure 8. For
the purpose of this study, the floating-point unit power in
the low-power state was set to the minimum of zero. In
the actual application the floating-point unit power is
maintained in a 75% standby state to minimize sharp tran-
sient loads on the power supply. Maintaining a 75% power
level also reduces microcycling stresses on the level 1 and
level 2 interconnects.

All elements in Flotherm software must be created from
cuboid blocks and plates. The major elements in the model
consisted of the silicon die, ceramic substrate, printed
circuit board, copper-tungsten package lid, and heat sink.
All interface materials, solder bump junctions, and solder
columns were modeled using internal plates. The reason
for this change was twofold. First, Flotherm interprets
internal plates as two-dimensional elements of fixed
resistance. This simplifies the solution grid and eliminates
many of the high-aspect-ratio cells. Secondly, internal
plates allow quick changes to the model for sensitivity
analysis. For example, rather than completely regridding
the solution for a thicker epoxy, a simple resistivity
change can be input and the new solution time shortened
by using the previous results. While Flotherm internal
plates only allow heat flow in a direction perpendicular
to the plate, this was adequate for the elements that were
chosen.

To decouple the effects of packaging and the final thermal
path (i.e., heat sink or heat pipe), the heat sink was mod-
eled by a large block of aluminum attached to the top of

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

43
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 8

Floating-
Point

Functional
Units

0%

Instruction
Reorder Buffer

16%

Integer
Functional

Units
8%

Data
Cache I//O

8%

D
at

a
Ca

ch
e

I/O
 7

%

In
st

ru
ct

io
n

Ca
ch

e
6%

(a)

Instruction
Reorder Buffer

18%

D
at

a
Ca

ch
e

I/O
 8

%

(b)

Integer
Functional

Units
9%

Data
Cache I//O

9%

Floating-
Point

Functional
Units
46%

In
st

ru
ct

io
n

Ca
ch

e
10

%

Power distribution in the (a) low-power and (b) high-power states.

the package. The top surface of this block was defined as
an isothermal (constant-temperature) surface. This is not
unlike a heat pipe, in which the boiling point of the fluid
creates an isothermal region. For the purposes of this
study, the isothermal surface was set to 60°C. If a different
ambient temperature is expected, the results from this
study can be scaled up or down by an amount equal to
the difference.

The ceramic package in this model is attached to a
printed circuit board. For simplicity, the printed circuit
board is modeled with a single lumped power plane to
enhance heat spreading. A low air flow rate of 0.29 m/s
is present, primarily to minimize the natural convection
plumes. With the solution as modeled, more than 90% of
the power flows to the isothermal surface. Convective
heat transfer from the package and printed circuit board
are almost negligible. Details of the model construction
can be seen in Figure 9.

The Flotherm model was first run using the highest ex-
pected power densities, as outlined above. Modeling re-
sults indicate a 20°C temperature difference between the
hottest and coolest portion of the chip. Two-dimensional
thermal contour lines on the surface of the half die can be
seen in Figure 10.

The Flotherm model was next run using the lowest ex-
pected power densities, as outlined above. Modeling re-
sults indicate a 10°C temperature difference between the
hottest and coolest portions of the chip (see Figure 10).

Compared to the full-power situation, the highest temper-
ature on the chip decreased by 16°C, while the lowest
temperature on the die decreased by only 5°C.

Sensitivity Analysis

Since the original physical thermal tests had been per-
formed with uniform power distribution, one of the first
questions to be asked was how much the maximum junc-
tion temperature in the nonuniform CPU differed from
that measured in the uniform test die. To quantify the dis-
parity between the test die and the PA 8000, a PA 8000
model with a uniform power source was created. The
total power was equal to the power of the gradient model
in the full-on condition. Under these conditions, the maxi-
mum junction temperature is 86°C (compared to a range

Figure 9

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

Heat Sink Slug

Ceramic Substrate

Isothermal Surface

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Copper-
Tungsten
LidSilicon Die

Printed Circuit Board with
Lumped Power/Ground Plane

Model construction for finite-difference simulation.

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

44
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 10

70
70

72

74

76

78 82 84

86

88

(a) (b)

64
66

68

72

70

68

Temperature (°C) gradients during (a) floating-point unit low-power mode and (b) full-power operation (from finite-difference
simulation).

of 90 to 68°C for the full-power condition with nonuniform
distribution). This simulation showed that thermal testing
with a uniform power source may have underpredicted
the maximum junction temperature by 4°C. Depending
on the amount of margin in the total thermal solution, this
may or may not be an issue.

Once it was ascertained that a significant temperature
gradient existed across the die surface, various sensitivity
studies were undertaken to determine how the package
construction might be used to minimize the temperature
gradient. It was originally thought that the ceramic sub-
strate might contribute enough heat spreading to equalize
the temperatures across the die surface. A study was per-
formed to determine the effect of either increasing or de-
creasing the thermal conductivity of the ceramic substrate.
The nominal conductivity of alumina is 18 W/m⋅°C. The
model was run with thermal conductivity an order of mag-
nitude lower (1.8) and an order of magnitude higher (180).
The lower thermal conductivity number is representative
of organic laminate substrates. The upper thermal con-
ductivity number is representative of an aluminum nitride
substrate.

With reduced substrate thermal conductivity, the tempera-
ture gradient was increased by two degrees. With in-
creased thermal conductivity, the thermal gradient was
reduced by six degrees. The conclusion is that varying
substrate thermal conductivity has a small to moderate
effect on the temperature gradient. This is partially be-
cause the primary heat path for the PA 8000 package is
through the back of the die.

As mentioned in the SPICE analysis discussion above,
the excellent thermal path out of the package is a major
contributing factor to the high temperature gradients. A
thicker copper-tungsten lid on the package would encour-
age better heat spreading, but would reduce junction-to-
ambient thermal performance. Similarly, increasing the
thermal resistance of the interface to the heat sink would
encourage more uniform temperatures, but would increase
the overall junction temperature.

Conclusion

The accuracy of both models was verified by performing
various measurements of the package case temperature
and using the temperature monitor features built into the
PA 8000 chip. Measurements agreed well with the temper-
ature predictions.

From the results of both the SPICE and the Flotherm
simulations, it is clear that there is a significant tempera-
ture variation across the surface of the PA 8000 die. This
variation is caused by the disproportionately high power
density of the floating-point unit. This temperature varia-
tion may result in underestimation of the actual junction
temperature.

Table II compares the SPICE and finite-difference pre-
dictions. Both models were surprisingly similar in predict-
ing the temperature gradient across the surface of the die.
The predicted areas of maximum and minimum die tem-
peratures were approximately the same with both tech-
niques. Because the SPICE model used higher ambient

Volume 50 • Number 1 • Article 6
November 1, 1998

 1998 Hewlett-Packard Company

45
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Table II
Comparison of SPICE and Finite-Difference Predictions

Simulation Tool
Gradient across Die with

Floating-Point Unit On
Gradient across Die with

Floating-Point Unit Off

Difference in Maximum Chip
Temperature between On and

Off States

Finite-Difference 20°C 10°C 16°C

SPICE 21°C 9°C 18°C

temperatures and assumed a higher case-to-ambient resis-
tance, the predicted temperatures were higher overall.
Adjustment of the model would bring the nominal temper-
atures closer to the finite-difference predictions.

Both models predicted similar transient responses as the
die was switched to the high-power state. The initial rise
time in the SPICE model was somewhat shorter because
the model did not include capacitive elements to represent
the thermal mass of the ceramic substrate and printed
circuit board.

Each model was found to have application advantages.
Because of the two-dimensional nature of the SPICE model,
the solution time was on the order of seconds, rather than
hours, as required for the finite-difference model. At the
same time, the three-dimensional nature of the finite-
difference model offered a better visual exploration into
the effects of various elements in the package construc-
tion. For an experienced user, the amount of time to con-
struct each model was about the same. The SPICE model
allowed the electrical designer to work with a familiar set
of tools to perform thermal analysis, but required a solid
understanding of the electrical analogs of thermal elements.
Finite-difference tools required a good understanding of
how to apply the elements available in the software pack-
age to the physical problem. The tools used to preprocess
and postprocess the SPICE data allowed automated input
of data directly from the chip power models. The Flotherm
user interface required manual input of all geometry and
power data.

The results of these simulations were discussed with the
PA 8000 packaging vendor. They identified localized
mechanical strain on the solder bump joints as a result of
thermal cycling as a potential reliability issue. Because of
concerns over step loads on the system power supplies,
the minimum floating-point unit power in existing products
is limited to 75% of the full power. Using updated nonuni-
form power distribution data, the packaging vendor per-
formed finite-element stress simulations and determined
that the mechanical integrity of the columns was not
compromised at the current power cycling levels.

The knowledge gained from these simulations is also
being applied to the development of future Hewlett-
Packard microprocessors.

Acknowledgments

Many thanks to Rich Blanco for sharing his PA 8000 Flo-
therm model, which was modified for this study. Thanks
also to the folks at Flomerics for their excellent customer
support.

References

1. A.P. Scott, et al, “Four-Way Superscalar PA-RISC Processors,”
Hewlett-Packard Journal, Vol. 48, no. 4, August 1997, pp. 8-15.

2. J.W. Bockhaus, et al, “Electrical Verification of the HP PA 8000
Processor,” ibid, pp. 32-39.

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

46
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

A Low-Complexity, Fixed-Rate Compression
Scheme for Color Images and Documents

Based on one-dimensional differential pulse code modulation, the coder is

multiplication-free, codes each pixel as soon as it is available, and outputs a

fixed number of bits for each pixel. Hence, there is no need for any buffering of

the input image or coder output bitstream. The compression scheme is visually

lossless and yields a modest compression ratio of 3 to 4. Because of its

simplicity, it is useful when hardware is limited and coding delays cannot be

tolerated.

There is often a need for some level of data compression in many imaging

devices and products, such as scanners and facsimile machines. The reason

can be the limited bandwidth of the data bus connecting the scanner to the

host computer or the size of the memory available in the product. In addition,

strict hardware limitations can preclude the use of compression schemes that

are computationally intensive.

A desirable feature of a compression scheme is that it be a fixed-rate coder.

Specifically, it is desirable for the compression scheme to produce the same

number of bits in compressing an 8.5-by-11-inch sheet of paper regardless of

its content. This guarantees that the memory of the device will never overflow

and that the data is always transmitted to the host in a fixed time. Many popular

compression schemes, such as the lossy JPEG and its newly adopted lossless

JPEG-LS algorithms, are variable-rate coders. They have the advantage that

they yield higher compression ratios than fixed-rate coders of comparable

complexity. However, their variable-rate nature implies that in compressing

a sheet of paper, there can be a large variation in the number of bits they

generate, depending on the content of the sheet.

In this paper we present a very simple compression scheme that adequately

addresses all the issues raised above. It compresses a given sheet of paper

����	 ���
�	�

����	 ���
�	�

From 1994 to 1997, Nader

Moayeri was a member of

the technical staff of the

Imaging Technology Department of HP Labora-

tories. Before joining HP, he was an assistant

professor of electrical and computer engineer-

ing at Rutgers University, and he is currently

manager of the Wireless Communications Tech-

nologies Group of the U.S. National Institute of

Standards and Technology. A senior member of

the IEEE, he received his PhD degree in electri-

cal engineering from the University of Michigan

at Ann Arbor in 1986. He is married, has a son,

and enjoys volleyball, soccer, and opera.

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

47
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

(which may contain images, text, graphical art, etc.) pixel
by pixel without any need for buffering the image data as
it is being scanned. It produces a fixed number of bits for
every pair of pixels, which can be stored or sent to the
host over the data bus. An equally simple algorithm de-
compresses the received bits to produce a visually loss-
less rendition of the image data. The coder is lossy, but
the loss level is so small that it is perceptually negligible.
The coder is based on one-dimensional differential pulse
code modulation (1D DPCM) using fully integer operation
predictors and quantizers.

Proposed Compression Scheme

In this section we describe the various components and
aspects of the compression scheme.

Differential pulse code modulation (DPCM) is a classical
lossy data compression technique originally developed at
Bell Laboratories for compressing the television signal.1 It
is the next level of sophistication in the compression tech-
nique hierarchy after pulse code modulation (PCM), which
is the same as nonuniform scalar quantization.

The block diagram for a DPCM coder with a first-order
predictor is shown in Figure 1. The task of the binary

encoder is to map the output E
^

n of the scalar quantizer to
a binary codeword in a one-to-one fashion. For example,
if the quantizer has 16 output levels, then the binary en-
coder will assign a four-bit distinct codeword to each pos-
sible quantizer output level. The binary decoder is simply
the inverse of the binary encoder and maps a given binary
codeword back to its respective quantizer output level. In

other words, the input to the DPCM decoder is simply E
^

n.
Also note that there is a copy of the DPCM decoder at the
DPCM encoder as shown by the shaded box in Figure 1.

The main idea of DPCM is to decorrelate the source data
before coding it. Correlations exist in many data sources,
such as images. DPCM removes these correlations by

making a prediction X
~

n of the next source sample Xn on
the basis of the past reconstructions and then coding the
prediction error En instead of Xn itself. (A PCM system
codes Xn directly.) In the system of Figure 1, the predic-
tor uses the reconstruction for the most recent source

Figure 1

�

Scalar
Quantizer

Binary
Encoder�

DPCM Decoder

Uncompressed Data
Compressed Data

(Binary Codewords)

DPCM Encoder

Xn

En

Xn

z–1

Xn En

ρ(a)

Compressed Data
(Binary Codewords)

Binary
Decoder �

z–1

ρ

En
Uncompressed Data

Xn

Xn

DPCM Decoder

(b)

~

^

~

^

^

^

The block diagram of a 1D DPCM coder with a first-order predictor (a) Encoder. (b) Decoder.

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

48
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

sample to predict the next one. That is, X
~

n� �X
^

n–1,

where ρ is a constant coefficient. A key property of
a DPCM coder, even those employing higher-order
predictors, is that:

Xn� X
^

n� En� E
^

n. (1)

Hence, the mean squared error (MSE) distortion of the
system is given by:

D� E[(Xn� X
^

n)2]� E[(En� E
^

n)2]. (2)

If the predictor does a good job of predicting the source,
then En will have a small variance (or effective dynamic
range) compared to Xn. Consequently, an N-level optimal
scalar quantizer for En will yield a smaller average distor-
tion than one for Xn.

The predictor coefficient ρ depends on the samplewise
correlation in the source; a larger value of ρ is used when
the source is highly correlated. From a theoretical point
of view, ρ should always be smaller than one so that the
decoder filter remains stable. From a practical point of
view, however, it is advantageous to use ρ�1. We have
opted for this choice in this work in the interest of making
the coder as simple as possible. We have not experienced
any instability problems in our experiments with the coder
presented here.

We also note that two-dimensional DPCM, in which each
pixel is predicted based on reconstructions for the pre-
vious pixel on the same image row and a couple of pixels
on the previous row just above the present pixel, is a
better choice for image compression. The predictor in 2D
DPCM performs better than the one in 1D DPCM, making
it possible to achieve better coded image quality at the
same compression ratio. Using a 2D predictor requires
buffering the reconstruction for the previous row of the
image and the part of the present row that has already
been encoded. In the interest of keeping the memory
requirements of our coder at a minimum, we use the 1D
predictor.

Quantization

In this work we assume that each output level of the scalar
quantizer is assigned a binary codeword of length log2N
by the binary encoder. (It is also possible to entropy-code
the quantizer output. Since that would lead to a variable-
rate coder, we are not interested in entropy-coded DPCM

in this work.) If the probability distribution of the pre-
diction error En is known, then an optimal N-level non-
uniform scalar quantizer for En can be designed. Such
quantizers are called Lloyd-Max quantizers and there are
algorithms for their design based on a training sequence
of samples from the source.2,3 We used the Lloyd algo-
rithm to design the quantizers needed in this work.

The problem of quantizer design in a DPCM system is
complicated because the probability distribution of En

depends on the quantizer and vice versa. This problem
has been addressed by Arnstein,4 who describes an
iterative design algorithm for the case of a first-order
Gauss-Markov source. Arnstein’s work, however, cannot
be readily extended to the case of a DPCM system for
images. Therefore, we use an open-loop approach to quan-
tizer design. Since we are interested in a visually lossless
compression scheme, it is reasonable to assume that

X
^

n� Xn. This approximation can be used to generate
a training sequence of samples of the prediction error.
Using a set of training images, we form the training
sequence for En by simply subtracting each image pixel
from the next one. Note that:

En� Xn� X
~

n� Xn� �X
^

n–1� Xn� X
^

n–1

� Xn� Xn–1.
(3)

Finally, to make the coder as simple as possible, we force
the quantizer output levels to be integers by properly
modifying the centroid condition in the Lloyd algorithm.
Specifically, we replace each centroid by the integer
closest to it. It is easy to show that this is indeed the
optimal way of designing integer valued scalar quantizers.
The problem that has to be solved is the following:

Problem: Given a random variable X, find an integer C that
minimizes E[(X�C)2].

Solution: For any integer C we can write:

E[(X� C)2]� E[({X� E[X]}� {E[X]� C})2]

� E[(X� E[X])2]� (E[X]� C)2

� 2(E[X]� C)E[X� E[X]]

� �
2
X� (E[X]� C)2,

(4)

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

49
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

where �2
X is the variance of X. The righthand side is mini-

mized by choosing C to be the integer closest to E[X].
In addition, since the input to each quantizer is integer
valued, we implement each quantizer with a small lookup
table.

DPCM for Image Compression

It is straightforward to design a compression system for
monochrome images based on the simple ideas presented
above. Usually the system specifications (bus bandwidth
and memory size) dictate a maximum rate r in bits per pixel
(bpp) for the images that are to be compressed by this
system. We assume that the rate is integer valued. (Other-
wise, several quantizer outputs should be grouped togeth-
er before being assigned a binary codeword. This would
imply a need for some buffering.) The number of quantiz-
er output levels is then given by N�2r, and the quantizer
is designed according to the procedure outlined earlier.

In the case of color images the situation is more compli-
cated. Of course, it is always possible to compress the
image data in the RGB color space. However, it is advan-
tageous to first transform the data into some other color
space and then code it. Such transformations result in
energy compaction in the data, which makes it possible
to achieve better compression performance. For our work
we picked the YUV color space. (The image data in some
HP scanner pipelines is already in the YUV format.) It is
well known that most of the image information is in the
Y signal. Hence, in many color image compression algo-
rithms, such as JPEG, the U and V signals are subsampled
by a factor of 2 in both the horizontal and vertical direc-
tions before being coded. This subsampling compresses
the U and V data by a factor of 4 even before any coding
is done. In this work we have investigated both alterna-
tives—subsampling the U and V signals and not doing any
subsampling. In the latter case we have to use quantizers
of lower rate for the U and V signals so that the overall
coding rate (or compression ratio) is the same as in the
subsampling case.

Yet another crucial factor in color image compression is
the allocation of the available bit rate to the three color
planes. There are optimal bit allocation algorithms that
maximize the peak signal-to-noise ratio (SNR) and are
commonly used in monochrome image coding.5,6 In the
case of color images there are three color planes to worry
about, and the peak SNR is even less relevant than in the

monochrome case. In this work we have taken an experi-
mental approach for finding the best rate allocation. Our
criterion is to get the best possible subjective image quali-
ty for a given overall rate. We are interested in rate values
that yield visually lossless coded image quality. Since
we have restricted quantizer rates to be integers, there
are only a small number of bit allocations possible for
any given overall rate. We found the best bit allocation
experimentally and by trail and error.

Experimental Results

We designed a compression system for color images based
on the ideas presented in the previous section and tested
it on a test image we obtained from the HP Greeley Hard-
copy Division. This is a compound image having photo-
graphic content, text, line art, and a rainbow ramp. In cod-
ing the U and V signals we investigated three alternatives:

(i) Coding these signals at full resolution

(ii) Subsampling them in the horizontal direction by
simply discarding every other pixel and using pixel
replication after the coding process

(iii) Replacing each pair of successive samples by
their average and then using a 3-tap area-based
interpolation filter7 after coding.

Since the choice of the subsampling strategy or lack
thereof affects the samplewise correlation of the U and V
signals, hence influencing the probability distribution of
the prediction error, we had to design two quantizers for
each of the above alternatives. Since the Y signal is not
subsampled, one quantizer is sufficient for that signal.
Therefore, we designed a total of seven sets of quantizers,
each set containing quantizers with 2, 4, 8, 16, 32, and 64
output levels. We used a training sequence consisting of
the above test image and four other large images to de-
sign the needed quantizers. We transformed these images
into the YUV color space, formed three mother training
sequences for the Y, U, and V signals by taking differences
of successive samples as described under “Quantization”
above, and formed two more sequences from each of the
mother sequences for U and V signals by properly sub-
sampling them according to the alternatives (ii) and (iii)
above. Using these seven training sequences we designed
the needed seven sets of quantizers. Then we experimen-
ted with different systems, with or without U and V
subsampling and with various choices of quantizers, to

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

50
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

code the test image. Table I shows the compression per-
formance obtained with various choices for compressing
the 24-bit test image at 12, 11, 10, 9, and 8 bits per pixel
(bpp). The first two lines in the table correspond to trans-
mitting certain numbers with infinite precision to the
receiving end. This is not practical, of course, but it sets
an upper bound on the best performance that can be
expected from strategies (ii) and (iii).

For all the coders in the table designated with an asterisk
(*), the quality of the coded image is visually lossless.

(Of course, the image quality is somewhat better at 12 bpp
than at 8 bpp when the image is scaled.)

In reading the bit rates in Table I, note that with strategies
(ii) and (iii) there are half as many U and V samples to be
coded as there are Y samples. Also note that the test
image is a particularly difficult image to work with. With
other photographic images, such as the other four images
in the training set, we were easily able to get a compres-
sion ratio of 4 to 6 and yet maintain visually lossless image
quality.

Table I
Bit Rate and Peak SNR (Signal-to-Noise Ratio) of the Proposed Coder with Various Test Image Parameters

Overall
Coder
Rate
(b)

Subsampling
Strategy for

a d

Subcoder Rate
(bpp)

Peak SNR (dB)
YUV Color Space

Peak SNR (dB)
RGB Color Space

(bpp) U and V Y U V Y U V Avg. R G B Avg.

∞
∞

(ii)
(iii)

∞
∞

∞
∞

∞
∞

∞
∞

33.73
37.91

33.77
37.72

∞
∞

31.21
35.07

35.28
38.75

29.22
33.39

31.90
35.73

12
12
12
12

(i)
(i)
(ii)
(iii)

6
4
6
6

3
4
6
6

3
4
6
6

45.26
38.27
45.26
45.26

39.54
44.84
33.60
37.42

40.06
45.14
33.65
37.39

41.62
42.75
37.51
40.02

36.58
36.81
30.95
34.41

40.56
37.85
34.76
37.61

34.53
36.08
29.01
32.65

37.22
36.91
31.57
34.89

∗

11
11
11
11
11

(i)
(ii)
(ii)
(iii)
(iii)

5
6
5
6
5

3
5
6
5
6

3
5
6
5
6

42.48
45.26
42.48
45.26
42.48

39.54
33.50
33.60
36.94
37.42

40.06
33.43
33.65
37.07
37.39

40.69
37.40
36.58
39.76
39.10

36.07
30.71
30.82
34.08
34.10

39.46
34.61
34.42
37.36
37.03

34.21
28.91
28.92
32.20
32.43

36.58
31.41
31.39
34.54
34.52

∗

10
10
10
10
10
10
10

(i)
(ii)
(ii)
(ii)
(iii)
(iii)
(iii)

4
6
5
4
6
5
4

3
4
5
6
4
5
6

3
4
5
6
4
5
6

38.27
45.26
42.48
38.27
45.26
42.48
38.27

39.54
33.24
33.50
33.60
37.02
36.94
37.42

40.06
33.41
33.43
33.65
36.84
37.07
37.39

39.29
37.30
36.47
35.18
39.71
38.83
37.30

34.72
30.73
30.58
30.37
33.93
33.79
33.21

36.97
34.57
34.29
33.44
37.29
36.82
35.41

33.24
28.67
28.82
28.63
32.33
31.99
31.79

34.98
31.32
31.23
30.82
34.52
34.20
33.47

∗

9
9
9
9
9
9

(ii)
(ii)
(ii)
(iii)
(iii)
(iii)

6
5
4
6
5
4

3
4
5
3
4
5

3
4
5
3
4
5

45.26
42.48
38.27
45.26
42.48
38.27

32.37
33.24
33.50
35.16
37.02
36.94

32.35
33.41
33.43
34.92
36.84
37.07

36.66
36.37
35.07
38.45
38.78
37.43

29.80
30.61
30.15
32.11
33.65
32.93

33.88
34.25
33.35
36.07
36.74
35.29

27.88
28.59
28.54
30.64
32.14
31.40

30.52
31.15
30.68
32.94
34.18
33.21

∗

8
8
8
8

(ii)
(ii)
(iii)
(iii)

5
4
5
4

3
4
3
4

3
4
3
4

42.48
38.27
42.48
38.27

32.37
33.24
35.16
37.02

32.35
33.41
34.92
36.84

35.73
34.97
37.52
37.38

29.70
30.19
31.91
32.83

33.61
33.31
35.66
35.21

27.81
28.31
30.50
31.56

30.37
30.60
32.69
33.20 ∗

The asterisks in the rightmost column designate the coder that gave the best image quality for each rate.

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

51
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Table II
Number of Arithmetic Operations per Image Pixel Needed by the Encoder

and Decoder With Each of the Three U and V Subsampling Strategies

Encoder Decoder

Strategy
Adds,

Subtracts
Table

Lookups Shifts
Adds,

Subtracts
Table

Lookups Shifts

(i) 6 3 0 3 3 0

(ii) 4 2 0 2 2 0

(iii) 5 2 1 5 2 3

It can be seen from the table that the naive subsampling
strategy (ii) of the U and V signals is always inferior to the
more careful strategy (iii). This is also true in terms of
coded image quality. However, implementing strategy (iii)
adds a little bit to the computational requirements of the
coder. We also note that strategy (iii) is in some cases
inferior to strategy (i), namely not subsampling at all. In
fact, we made the observation that at high bit rates, even
if no quantization at all is done after subsampling with
either strategy (ii) or (iii), the quality of the reconstructed
image can be inferior to an image obtained with coding
and strategy (i). This can be seen by comparing the first
two lines of Table I with the third line, for example. The
reason is the inherent loss of the subsampling and recon-
struction operations. Finally, strategy (iii) seems to be
better than strategy (i) at bit rates 10, 9, and 8 bpp. This
might be because in our experiments we restricted our
attention to cases where the U and V signals get equal
shares of the available bit rate and the quantizer rates are
all integers.

Finally, we like to stress that all three coding strategies
proposed in this paper are very simple. Table II shows
the exact number of encoding and decoding operations
required by each strategy. All three methods have negligi-
ble computational complexity and hence would have a
very simple implementation and would run very fast. The
amount of memory needed at the encoder is simply that
for the three lookup tables implementing the three quan-
tizers. Each method would need three tables of 511 bytes
each with a conservative allocation of one byte per table
entry. Each decoding method would also need three look-
up tables to map the quantizer indices to the quantizer
output levels. These tables would be on the host and not
on the scanner. They are even smaller than those needed

at the encoder, because each would have as many entries
as the number of quantizer output levels.

Conclusion

In this paper we have presented a compression scheme for
color images based on one-dimensional differential pulse
code modulation (DPCM). The image data is assumed to
be in YUV or YCrCb color space, and the chrominance
information may or may not have been subsampled. There
is one DPCM coder for each of the three color components,
and an optimal nonuniform scalar quantizer (a Lloyd-Max
quantizer) for each coder. The three quantizers have been
designed in such a way that all their output levels are inte-
ger valued. Therefore, the coder uses integer operations
exclusively. The quantizers are implemented by lookup
tables and the predictors are simple. Consequently, the
coder is multiplication-free. The coder operates in real
time in the sense that each pixel is coded as soon as it is
available (this would be useful in a scanner). In addition,
the coder outputs a fixed number of bits for each pixel.
Hence, there is no need for any buffering of the coder
output bitstream before transmission. All these features
make the coder very simple and easily implementable
with minimal hardware. Even the memory requirement of
the coder is negligible because the lookup tables are small
and there is no need to buffer the image pixels.

This compression scheme has been tested on several
images of different types and contents. The coded image
quality is very good and visually lossless in all cases.
The coder yields a modest compression ratio of 3 to 4.
The coder’s compression performance is not as high as
the industry-standard JPEG algorithm, but then JPEG is
a variable-rate coder that is orders of magnitude more
complex. Because of its extreme simplicity, the coder is

Volume 50 • Number 1 • Article 7
November 1, 1998

 1998 Hewlett-Packard Company

52
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

suitable for applications in which there is limited hard-
ware capability and coding delays cannot be tolerated.
It may be the simplest coder that achieves modest com-
pression without compromising the image quality.

References

1. C.C. Cutler, Differential quantization for television signals,
U.S. Patent 2605361, July 1952.

2. S.P. Lloyd, “Least squares quantization in PCM,” IEEE Trans-

actions on Information Theory, Vol. IT-28, Part I, March 1982,
pp. 129-137.

3. J. Max, “Quantizing for minimum distortion,” IEEE Trans-

actions on Information Theory, Vol. IT-6, March 1960, pp. 7-12.

4. D.S. Arnstein, “Quantization error in predictive coders,” IEEE

Transactions on Communications, Vol. COM-23, April 1975,
pp. 423-429.

5. Y. Shoham and A. Gersho, “Efficient bit allocation for an
arbitrary set of quantizers,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. ASSP-36, September 1988,
pp. 1445-1453.

6. E.A. Riskin, “Optimal bit allocation via the generalized BFOS
algorithm,” IEEE Transactions on Information Theory,
Vol. IT-37, March 1991, pp. 400-402.

7. P.W. Wong and C. Herley, “Area-Based Interpolation for Scaling
of Images from a CCD,” Proceedings of the IEEE International

Conference on Image Processing, Santa Barbara, California,
November 1997, pp. I905-908.

	bigcover_1198.jpg
	nov98a1.pdf
	nov98a2.pdf
	nov98a3.pdf
	nov98a4.pdf
	nov98a5.pdf
	nov98a6.pdf
	nov98a7.pdf
	Acr7E.tmp
	Local Disk
	HP Journal - Table of Contents - November 1998 Volume 50 Issue 1

